Stereo-PIV using self-calibration on particle images

Stereo-PIV using self-calibration on particle images A stereo-PIV (stereo particle image velocimetry) calibration procedure has been developed based on fitting a camera pinhole model to the two cameras using single or multiple views of a 3D calibration plate. A disparity vector map is computed on the real particle images by cross-correlation of the images from cameras 1 and 2 to determine if the calibration plate coincides with the light sheet. From the disparity vectors, the true position of the light sheet in space is fitted and the mapping functions are corrected accordingly. It is shown that it is possible to derive accurate mapping functions, even if the calibration plate is quite far away from the light sheet, making the calibration procedure much easier. A modified 3-media camera pinhole model has been implemented to account for index-of-refraction changes along the optical path. It is then possible to calibrate outside closed flow cells and self-calibrate onto the recordings. This method allows stereo-PIV measurements to be taken inside closed measurement volumes, which was not previously possible. From the computed correlation maps, the position and thickness of the two laser light sheets can be derived to determine the thickness, degree of overlap and the flatness of the two sheets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Stereo-PIV using self-calibration on particle images

Loading next page...
 
/lp/springer_journal/stereo-piv-using-self-calibration-on-particle-images-DjUt77BD2g
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0962-z
Publisher site
See Article on Publisher Site

Abstract

A stereo-PIV (stereo particle image velocimetry) calibration procedure has been developed based on fitting a camera pinhole model to the two cameras using single or multiple views of a 3D calibration plate. A disparity vector map is computed on the real particle images by cross-correlation of the images from cameras 1 and 2 to determine if the calibration plate coincides with the light sheet. From the disparity vectors, the true position of the light sheet in space is fitted and the mapping functions are corrected accordingly. It is shown that it is possible to derive accurate mapping functions, even if the calibration plate is quite far away from the light sheet, making the calibration procedure much easier. A modified 3-media camera pinhole model has been implemented to account for index-of-refraction changes along the optical path. It is then possible to calibrate outside closed flow cells and self-calibrate onto the recordings. This method allows stereo-PIV measurements to be taken inside closed measurement volumes, which was not previously possible. From the computed correlation maps, the position and thickness of the two laser light sheets can be derived to determine the thickness, degree of overlap and the flatness of the two sheets.

Journal

Experiments in FluidsSpringer Journals

Published: May 26, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off