Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems

Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment... Pathogens are becoming nearly untreatable due to the rise in gaining new resistance against standard antibiotics. Coexistence of microbial pathogens, antibiotics and antibiotic resistant genes (ARGs) in wastewater treatment plants (WWTP) provide favourable conditions for the development of new antibiotic resistant bacteria (ARB); facilitate horizontal gene transfer among pathogens and may also serve as a hotspot for the spread of ARB and genes into the environment. In this study, the current status of wastewater treatment systems in the removal of pathogens, ARGs, and antibiotic residues are discussed. WWTP are efficient in removing pathogens and antibiotic residues to a greater extend during secondary and tertiary treatment processes. Recent studies, however, have shown high variations in the presence of pathogens including ARB as well as antibiotic resistance genes (ARG) in the final effluent. Prolonged sludge retention time (SRT) and hydraulic retention time (HRT) during secondary treatment will facilitate antibiotic removal by adsorption and biodegradation. However, the above conditions can also lead to the enhancement of antibiotic resistance process in microbes. Therefore, optimum conditions for the operation of conventional WWTP for the efficient removal of antibiotics are yet to be established. The removal of antibiotic residues can be accelerated by combining conventional activated sludge (CAS) process with an additional treatment technology involving dosing with ozone. The advanced biological treatment method using membrane bioreactors (MBR) in combination with coagulation reportedly has the best ARG removal efficiency, and removes both ARB and extracellular ARGs. While studies have predicted the fate for ARGs in wastewater treatment plants, the mechanisms of ARGs acquisition remains to be conclusively established. Thus, strategies to investigate the underlying mechanism of acquisition of ARGs within the WWTP are also provided in this review. Reviews in Environmental Science and Bio/Technology Springer Journals

Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media B.V.
Environment; Environmental Engineering/Biotechnology; Microbiology; Atmospheric Protection/Air Quality Control/Air Pollution
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial