Statistical Solutions of Hyperbolic Conservation Laws: Foundations

Statistical Solutions of Hyperbolic Conservation Laws: Foundations We seek to define statistical solutions of hyperbolic systems of conservation laws as time-parametrized probability measures on p-integrable functions. To do so, we prove the equivalence between probability measures on L p spaces and infinite families of correlation measures. Each member of this family, termed a correlation marginal, is a Young measure on a finite-dimensional tensor product domain and provides information about multi-point correlations of the underlying integrable functions. We also prove that any probability measure on a L p space is uniquely determined by certain moments (correlation functions) of the equivalent correlation measure. We utilize this equivalence to define statistical solutions of multi-dimensional conservation laws in terms of an infinite set of equations, each evolving a moment of the correlation marginal. These evolution equations can be interpreted as augmenting entropy measure-valued solutions, with additional information about the evolution of all possible multi-point correlation functions. Our concept of statistical solutions can accommodate uncertain initial data as well as possibly non-atomic solutions, even for atomic initial data. For multi-dimensional scalar conservation laws we impose additional entropy conditions and prove that the resulting entropy statistical solutions exist, are unique and are stable with respect to the 1-Wasserstein metric on probability measures on L 1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive for Rational Mechanics and Analysis Springer Journals

Statistical Solutions of Hyperbolic Conservation Laws: Foundations

Loading next page...
 
/lp/springer_journal/statistical-solutions-of-hyperbolic-conservation-laws-foundations-nB4WaxHN1W
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
ISSN
0003-9527
eISSN
1432-0673
D.O.I.
10.1007/s00205-017-1145-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial