Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Statistical Solutions of Hyperbolic Conservation Laws: Foundations

Statistical Solutions of Hyperbolic Conservation Laws: Foundations We seek to define statistical solutions of hyperbolic systems of conservation laws as time-parametrized probability measures on p-integrable functions. To do so, we prove the equivalence between probability measures on L p spaces and infinite families of correlation measures. Each member of this family, termed a correlation marginal, is a Young measure on a finite-dimensional tensor product domain and provides information about multi-point correlations of the underlying integrable functions. We also prove that any probability measure on a L p space is uniquely determined by certain moments (correlation functions) of the equivalent correlation measure. We utilize this equivalence to define statistical solutions of multi-dimensional conservation laws in terms of an infinite set of equations, each evolving a moment of the correlation marginal. These evolution equations can be interpreted as augmenting entropy measure-valued solutions, with additional information about the evolution of all possible multi-point correlation functions. Our concept of statistical solutions can accommodate uncertain initial data as well as possibly non-atomic solutions, even for atomic initial data. For multi-dimensional scalar conservation laws we impose additional entropy conditions and prove that the resulting entropy statistical solutions exist, are unique and are stable with respect to the 1-Wasserstein metric on probability measures on L 1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive for Rational Mechanics and Analysis Springer Journals

Statistical Solutions of Hyperbolic Conservation Laws: Foundations

Loading next page...
 
/lp/springer_journal/statistical-solutions-of-hyperbolic-conservation-laws-foundations-nB4WaxHN1W

References (55)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
ISSN
0003-9527
eISSN
1432-0673
DOI
10.1007/s00205-017-1145-9
Publisher site
See Article on Publisher Site

Abstract

We seek to define statistical solutions of hyperbolic systems of conservation laws as time-parametrized probability measures on p-integrable functions. To do so, we prove the equivalence between probability measures on L p spaces and infinite families of correlation measures. Each member of this family, termed a correlation marginal, is a Young measure on a finite-dimensional tensor product domain and provides information about multi-point correlations of the underlying integrable functions. We also prove that any probability measure on a L p space is uniquely determined by certain moments (correlation functions) of the equivalent correlation measure. We utilize this equivalence to define statistical solutions of multi-dimensional conservation laws in terms of an infinite set of equations, each evolving a moment of the correlation marginal. These evolution equations can be interpreted as augmenting entropy measure-valued solutions, with additional information about the evolution of all possible multi-point correlation functions. Our concept of statistical solutions can accommodate uncertain initial data as well as possibly non-atomic solutions, even for atomic initial data. For multi-dimensional scalar conservation laws we impose additional entropy conditions and prove that the resulting entropy statistical solutions exist, are unique and are stable with respect to the 1-Wasserstein metric on probability measures on L 1.

Journal

Archive for Rational Mechanics and AnalysisSpringer Journals

Published: Jul 14, 2017

There are no references for this article.