Statistical processing and convergence of finite-record-length time-series measurements from turbulent flows

Statistical processing and convergence of finite-record-length time-series measurements from... In this manuscript, we investigate the statistical convergence of turbulent flow statistics from finite-record-length time-series measurements. Analytical solutions of the convergence rate of the mean, variance, and autocorrelation function as a function of record length are presented based on using mean-squared error analysis and the consideration of turbulent flows as random processes. Experimental assessment of the statistical convergence theory is presented using 20-kHz laser Rayleigh scattering measurements of a conserved scalar (ξ) in a turbulent free jet. Excellent agreement between experiments and theory is noted, providing validation of the statistical convergence analysis. To the authors’ knowledge, this is the first reported assessment and verification of statistical convergence theory as applied to turbulent flows. The verified theory provides a practitioner a method for a priori determining the necessary temporal record length for a desired statistical accuracy or conversely, accurately estimating the uncertainty of a measurement for a given temporal record length. Furthermore, we propose a new hybrid “multi-burst” data processing scheme based on combined independent ensemble and time-series statistics targeted for shorter-duration time-series measurements. The new methodology is based on taking the ensemble mean of derived statistical moments from many individual finite-duration time-series measurements. This approach is used to systematically converge toward the “expected” value of any statistical moment at a rate of $$\sqrt M$$ M , where M is the number of individual time-series measurements. The proposed multi-burst methodology is assessed experimentally, and excellent agreement between measurements and theory is observed. A key outcome of the implementation of the multi-burst processing method is noted in the estimation of the autocorrelation function. Specifically, an unbiased estimator of the autocorrelation function can be used with much less uncertainty as compared to the biased estimator, which is not the case for single time-series measurements irrespective of record length. The primary outcome of the multi-burst processing scheme is a methodology for achieving high statistical convergence for turbulent flow time-series measurements characterized by limited acquisition time, whether facility or instrument dependent. Experiments in Fluids Springer Journals

Statistical processing and convergence of finite-record-length time-series measurements from turbulent flows

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial