Statistical matching and uncertainty analysis in combining household income and expenditure data

Statistical matching and uncertainty analysis in combining household income and expenditure data Among the goals of statistical matching, a very important one is the estimation of the joint distribution of variables not jointly observed in a sample survey but separately available from independent sample surveys. The absence of joint information on the variables of interest leads to uncertainty about the data generating model since the available sample information is unable to discriminate among a set of plausible joint distributions. In the present paper a short review of the concept of uncertainty in statistical matching under logical constraints, as well as how to measure uncertainty for continuous variables is presented. The notion of matching error is related to an appropriate measure of uncertainty and a criterion of selecting matching variables by choosing the variables minimizing such an uncertainty measure is introduced. Finally, a method to choose a plausible joint distribution for the variables of interest via iterative proportional fitting algorithm is described. The proposed methodology is then applied to household income and expenditure data when extra sample information regarding the average propensity to consume is available. This leads to a reconstructed complete dataset where each record includes measures on income and expenditure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistical Methods & Applications Springer Journals

Statistical matching and uncertainty analysis in combining household income and expenditure data

Loading next page...
 
/lp/springer_journal/statistical-matching-and-uncertainty-analysis-in-combining-household-aMYAqiwcb0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Statistics; Statistics, general; Statistical Theory and Methods
ISSN
1618-2510
eISSN
1613-981X
D.O.I.
10.1007/s10260-016-0374-7
Publisher site
See Article on Publisher Site

Abstract

Among the goals of statistical matching, a very important one is the estimation of the joint distribution of variables not jointly observed in a sample survey but separately available from independent sample surveys. The absence of joint information on the variables of interest leads to uncertainty about the data generating model since the available sample information is unable to discriminate among a set of plausible joint distributions. In the present paper a short review of the concept of uncertainty in statistical matching under logical constraints, as well as how to measure uncertainty for continuous variables is presented. The notion of matching error is related to an appropriate measure of uncertainty and a criterion of selecting matching variables by choosing the variables minimizing such an uncertainty measure is introduced. Finally, a method to choose a plausible joint distribution for the variables of interest via iterative proportional fitting algorithm is described. The proposed methodology is then applied to household income and expenditure data when extra sample information regarding the average propensity to consume is available. This leads to a reconstructed complete dataset where each record includes measures on income and expenditure.

Journal

Statistical Methods & ApplicationsSpringer Journals

Published: Dec 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off