Statistical learning with group invariance: problem, method and consistency

Statistical learning with group invariance: problem, method and consistency Statistical learning theory (SLT) provides the theoretical basis for many machine learning algorithms (e.g. SVMs and kernel methods). Invariance, as one type of popular prior knowledge in pattern analysis, has been widely incorporated into various statistical learning algorithms to improve learning performance. Though successful in some applications, existing invariance learning algorithms are task-specific, and lack a solid theoretical basis including consistency. In this paper, we first propose the problem of statistical learning with group invariance (or group invariance learning in short) to provide a unifying framework for existing invariance learning algorithms in pattern analysis by exploiting group invariance. We then introduce the group invariance empirical risk minimization (GIERM) method to solve the group invariance learning problem, which incorporates the group action on the original data into empirical risk minimization (ERM). Finally, we investigate the consistency of the GIERM method in detail. Our theoretical results include three theorems, covering the necessary and sufficient conditions of consistency, uniform two-sided convergence and uniform one-sided convergence for the group invari- ance learning process based on the GIERM method. Keywords Statistical learning · Group invariance · Group invariance empirical risk minimization · Consistency · Uniform convergence 1 Introduction results when applied directly to the learning tasks such as http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Machine Learning and Cybernetics Springer Journals

Statistical learning with group invariance: problem, method and consistency

Loading next page...
 
/lp/springer_journal/statistical-learning-with-group-invariance-problem-method-and-UO4AcGg0tx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Complex Systems; Systems Biology; Pattern Recognition
ISSN
1868-8071
eISSN
1868-808X
D.O.I.
10.1007/s13042-018-0829-2
Publisher site
See Article on Publisher Site

Abstract

Statistical learning theory (SLT) provides the theoretical basis for many machine learning algorithms (e.g. SVMs and kernel methods). Invariance, as one type of popular prior knowledge in pattern analysis, has been widely incorporated into various statistical learning algorithms to improve learning performance. Though successful in some applications, existing invariance learning algorithms are task-specific, and lack a solid theoretical basis including consistency. In this paper, we first propose the problem of statistical learning with group invariance (or group invariance learning in short) to provide a unifying framework for existing invariance learning algorithms in pattern analysis by exploiting group invariance. We then introduce the group invariance empirical risk minimization (GIERM) method to solve the group invariance learning problem, which incorporates the group action on the original data into empirical risk minimization (ERM). Finally, we investigate the consistency of the GIERM method in detail. Our theoretical results include three theorems, covering the necessary and sufficient conditions of consistency, uniform two-sided convergence and uniform one-sided convergence for the group invari- ance learning process based on the GIERM method. Keywords Statistical learning · Group invariance · Group invariance empirical risk minimization · Consistency · Uniform convergence 1 Introduction results when applied directly to the learning tasks such as

Journal

International Journal of Machine Learning and CyberneticsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off