Static and dynamic analyses of nanoscale rectangular plates incorporating surface energy

Static and dynamic analyses of nanoscale rectangular plates incorporating surface energy In this paper, the Gurtin–Murdoch continuum theory is applied to develop a new continuum mechanics model for static and dynamic analyses of nanoscale rectangular plates. The relevant governing equations are established from basic principles. Analytical solutions for static and free vibration of nanoscale rectangular plates are presented for selected boundary conditions. A finite element method for the analysis of rectangular nanoplates is also developed to solve general cases that cannot be solved analytically. Expressions for stiffness and mass matrices and the load vector are derived by using a weighted residual formulation. A selected set of numerical results is presented to investigate the size-dependent static and free vibration response of plates and the influence of surface material properties and boundary conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

Static and dynamic analyses of nanoscale rectangular plates incorporating surface energy

Loading next page...
 
/lp/springer_journal/static-and-dynamic-analyses-of-nanoscale-rectangular-plates-qLjSkt1XAv
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0001-5970
eISSN
1619-6937
D.O.I.
10.1007/s00707-015-1521-1
Publisher site
See Article on Publisher Site

Abstract

In this paper, the Gurtin–Murdoch continuum theory is applied to develop a new continuum mechanics model for static and dynamic analyses of nanoscale rectangular plates. The relevant governing equations are established from basic principles. Analytical solutions for static and free vibration of nanoscale rectangular plates are presented for selected boundary conditions. A finite element method for the analysis of rectangular nanoplates is also developed to solve general cases that cannot be solved analytically. Expressions for stiffness and mass matrices and the load vector are derived by using a weighted residual formulation. A selected set of numerical results is presented to investigate the size-dependent static and free vibration response of plates and the influence of surface material properties and boundary conditions.

Journal

Acta MechanicaSpringer Journals

Published: Jan 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off