State-Dependent Inhibition of Inactivation-Deficient CaV1.2 and CaV2.3 Channels By Mibefradil

State-Dependent Inhibition of Inactivation-Deficient CaV1.2 and CaV2.3 Channels By Mibefradil The structural determinants of mibefradil inhibition were analyzed using wild-type and inactivation-modified CaV1.2 (α1C) and CaV2.3 (α1E) channels. Mibefradil inhibition of peak Ba2+ currents was dose- and voltage-dependent. An increase of holding potentials from −80 to −100 mV significantly shifted dose-response curves toward higher mibefradil concentrations, namely from a concentration of 108 ± 21 μm (n= 7) to 288 ± 17 μm (n= 3) for inhibition of half of the Cav1.2 currents (IC 50) and from IC 50= 8 ± 2 μm (n= 9) to 33 ± 7 μm (n= 4) for CaV2.3 currents. In the presence of mibefradil, CaV1.2 and CaV2.3 experienced significant use-dependent inhibition (0.1 to 1 Hz) and slower recovery from inactivation suggesting mibefradil could promote transition(s) to an absorbing inactivated state. In order to investigate the relationship between inactivation and drug sensitivity, mibefradil inhibition was studied in inactivation-altered CaV1.2 and CaV2.3 mutants. Mibefradil significantly delayed the onset of channel recovery from inactivation in CEEE (Repeat I + part of the I–II linker from CaV1.2 in the CaV2.3 host channel), in EC(AID)EEE (part of the I–II linker from CaV1.2 in the CaV2.3 host channel) as well as in CaV1.2 E462R, and CaV2.3 R378E (point mutation in the β-subunit binding motif) channels. Mibefradil inhibited the faster inactivating chimera EC(IS1-6)EEE with an IC 50= 7 ± 1 μm (n= 3), whereas the slower inactivating chimeras EC(AID)EEE and CEEE were, respectively, inhibited with IC 50= 41 ± 5 μm (n= 4) and IC 50= 68 ± 9 μm (n= 5). Dose-response curves were superimposable for the faster EC(IS1-6)EEE and CaV2.3, whereas intermediate-inactivating channel kinetics (CEEE, CaV1.2 E462R, and CaV1.2 E462K) were inhibited by similar concentrations of mibefradil with IC 50≈ 55–75 μm. The slower CaV1.2 wild-type and CaV1.2 Q473K channels responded to higher doses of mibefradil with IC 50≈ 100–120 μm. Mibefradil was also found to significantly speed up the inactivation kinetics of slower channels (CaV1.2, CEEE) with little effect on the inactivation kinetics of faster-inactivating channels (CaV2.3). A open-channel block model for mibefradil interaction with high-voltage-activated Ca2+ channels is discussed and shown to qualitatively account for our observations. Hence, our data agree reasonably well with a ``receptor guarded mechanism'' where fast inactivation kinetics efficiently trap mibefradil into the channel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

State-Dependent Inhibition of Inactivation-Deficient CaV1.2 and CaV2.3 Channels By Mibefradil

Loading next page...
 
/lp/springer_journal/state-dependent-inhibition-of-inactivation-deficient-cav1-2-and-cav2-3-pKvIo0hDCV
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0083-4
Publisher site
See Article on Publisher Site

Abstract

The structural determinants of mibefradil inhibition were analyzed using wild-type and inactivation-modified CaV1.2 (α1C) and CaV2.3 (α1E) channels. Mibefradil inhibition of peak Ba2+ currents was dose- and voltage-dependent. An increase of holding potentials from −80 to −100 mV significantly shifted dose-response curves toward higher mibefradil concentrations, namely from a concentration of 108 ± 21 μm (n= 7) to 288 ± 17 μm (n= 3) for inhibition of half of the Cav1.2 currents (IC 50) and from IC 50= 8 ± 2 μm (n= 9) to 33 ± 7 μm (n= 4) for CaV2.3 currents. In the presence of mibefradil, CaV1.2 and CaV2.3 experienced significant use-dependent inhibition (0.1 to 1 Hz) and slower recovery from inactivation suggesting mibefradil could promote transition(s) to an absorbing inactivated state. In order to investigate the relationship between inactivation and drug sensitivity, mibefradil inhibition was studied in inactivation-altered CaV1.2 and CaV2.3 mutants. Mibefradil significantly delayed the onset of channel recovery from inactivation in CEEE (Repeat I + part of the I–II linker from CaV1.2 in the CaV2.3 host channel), in EC(AID)EEE (part of the I–II linker from CaV1.2 in the CaV2.3 host channel) as well as in CaV1.2 E462R, and CaV2.3 R378E (point mutation in the β-subunit binding motif) channels. Mibefradil inhibited the faster inactivating chimera EC(IS1-6)EEE with an IC 50= 7 ± 1 μm (n= 3), whereas the slower inactivating chimeras EC(AID)EEE and CEEE were, respectively, inhibited with IC 50= 41 ± 5 μm (n= 4) and IC 50= 68 ± 9 μm (n= 5). Dose-response curves were superimposable for the faster EC(IS1-6)EEE and CaV2.3, whereas intermediate-inactivating channel kinetics (CEEE, CaV1.2 E462R, and CaV1.2 E462K) were inhibited by similar concentrations of mibefradil with IC 50≈ 55–75 μm. The slower CaV1.2 wild-type and CaV1.2 Q473K channels responded to higher doses of mibefradil with IC 50≈ 100–120 μm. Mibefradil was also found to significantly speed up the inactivation kinetics of slower channels (CaV1.2, CEEE) with little effect on the inactivation kinetics of faster-inactivating channels (CaV2.3). A open-channel block model for mibefradil interaction with high-voltage-activated Ca2+ channels is discussed and shown to qualitatively account for our observations. Hence, our data agree reasonably well with a ``receptor guarded mechanism'' where fast inactivation kinetics efficiently trap mibefradil into the channel.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 15, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off