Stagnation temperature in a cold hypersonic flow produced by a light free piston compression facility

Stagnation temperature in a cold hypersonic flow produced by a light free piston compression... Stagnation temperatures at the nozzle exit of the University of Southern Queensland hypersonic wind tunnel facility have been identified using an aspirating tube device with a 0.075 mm diameter k-type butt-welded thermocouple junction positioned at its inlet. Because of the finite thermal inertia of the thermocouple, a response time correction is introduced, and uncertainties in the response time correction are assessed and minimized by operating the aspirating device over a range of different initial temperatures. Pressure measurements within the barrel of the wind tunnel facility were used to estimate a theoretical upper bound on the flow stagnation temperature by assuming isentropic compression of the test gas. Results demonstrate that for the current operating conditions, the gas which is first delivered into the hypersonic nozzle has a stagnation temperature almost identical to the isentropic compression value of around 560 K, but a cooling effect is registered for the duration of the test flow which is about 200 ms. Thermodynamic simulations based on an unsteady energy balance model with turbulent heat transfer from the test gas within the barrel demonstrate a cooling effect of a similar magnitude to that indicated by the measured temperature variation, suggesting that strong mixing of the test gas occurs within the barrel during flow discharge through the hypersonic nozzle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Stagnation temperature in a cold hypersonic flow produced by a light free piston compression facility

Loading next page...
 
/lp/springer_journal/stagnation-temperature-in-a-cold-hypersonic-flow-produced-by-a-light-gnbFp7Zr3C
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1486-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial