Stable isotope fractionation between maternal and embryo tissues in the Bonnethead shark (Sphyrna tiburo)

Stable isotope fractionation between maternal and embryo tissues in the Bonnethead shark (Sphyrna... Evaluating tissue fractionation between mothers and their offspring is fundamental for informing our interpretation of stable isotope values in young individuals and can provide insight into the dynamics of maternal provisioning. The objectives of this study were to investigate the isotopic relationships between maternal reproductive (i.e., yolk, yolk-sac placenta) and somatic tissues (i.e., muscle and liver) relative to embryos in the Bonnethead Shark Sphyrna tiburo, to evaluate the fractionation of stable carbon (δ13C) and nitrogen (δ15N) isotopes between these tissues. Additionally, we examined intra-uterine variability in the isotopic relationships to ascertain whether this species may exhibit variable nutrient allocation. Embryos showed similar magnitudes of enrichment in 13C (i.e., Δδ13C, difference between adult and embryo) relative to adult tissues (Δδ13C = ~1.0‰). However, embryos were depleted in 15N relative to adult muscle tissues (Δδ15N = −1.0‰), a finding that contrasts Δδ15N values reported for other placentotrophic sharks. Embryo-muscle Δδ15N was correlated with length, supporting the contention that the magnitude of enrichment between embryonic and maternal tissues results from the shift from yolk to placental feeding. Embryo δ15N and Δδ15N values showed significant intra-uterine variability; a result not observed for δ13C and Δδ13C values. The contrasting patterns in fractionation among placentotrophic sharks highlight the importance of evaluating these relationships across elasmobranch taxa with consideration for different tissues, reproductive strategies and stages of gestation. The divergent findings support future evaluation of stable isotope relationships between mothers and offspring for purposes of estimating inherent isotopic variability and how this variability may inform physiological and dietary mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Biology of Fishes Springer Journals

Stable isotope fractionation between maternal and embryo tissues in the Bonnethead shark (Sphyrna tiburo)

Loading next page...
 
/lp/springer_journal/stable-isotope-fractionation-between-maternal-and-embryo-tissues-in-WxPjtxjekj
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology; Animal Systematics/Taxonomy/Biogeography; Environment, general; Nature Conservation
ISSN
0378-1909
eISSN
1573-5133
D.O.I.
10.1007/s10641-018-0715-5
Publisher site
See Article on Publisher Site

Abstract

Evaluating tissue fractionation between mothers and their offspring is fundamental for informing our interpretation of stable isotope values in young individuals and can provide insight into the dynamics of maternal provisioning. The objectives of this study were to investigate the isotopic relationships between maternal reproductive (i.e., yolk, yolk-sac placenta) and somatic tissues (i.e., muscle and liver) relative to embryos in the Bonnethead Shark Sphyrna tiburo, to evaluate the fractionation of stable carbon (δ13C) and nitrogen (δ15N) isotopes between these tissues. Additionally, we examined intra-uterine variability in the isotopic relationships to ascertain whether this species may exhibit variable nutrient allocation. Embryos showed similar magnitudes of enrichment in 13C (i.e., Δδ13C, difference between adult and embryo) relative to adult tissues (Δδ13C = ~1.0‰). However, embryos were depleted in 15N relative to adult muscle tissues (Δδ15N = −1.0‰), a finding that contrasts Δδ15N values reported for other placentotrophic sharks. Embryo-muscle Δδ15N was correlated with length, supporting the contention that the magnitude of enrichment between embryonic and maternal tissues results from the shift from yolk to placental feeding. Embryo δ15N and Δδ15N values showed significant intra-uterine variability; a result not observed for δ13C and Δδ13C values. The contrasting patterns in fractionation among placentotrophic sharks highlight the importance of evaluating these relationships across elasmobranch taxa with consideration for different tissues, reproductive strategies and stages of gestation. The divergent findings support future evaluation of stable isotope relationships between mothers and offspring for purposes of estimating inherent isotopic variability and how this variability may inform physiological and dietary mechanisms.

Journal

Environmental Biology of FishesSpringer Journals

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off