Stable increased formulation atomization using a multi-tip nozzle device

Stable increased formulation atomization using a multi-tip nozzle device Electrohydrodynamic atomization (EHDA) is an emerging technique for the production of micron and nano-scaled particles. The process often involves Taylor cone enablement, which results in a fine spray yielding formulated droplets, which then undergo drying during deposition. In this work, novel multi-tip emitter (MTE) devices were designed, engineered and utilized for potential up-scaled EHDA, by comparison with a conventional single-needle system. To demonstrate this, the active ketoprofen (KETO) was formulated using polyvinylpyrrolidone (PVP) polymer as the matrix material. Here, PVP polymer (5% w/v)solution was prepared using ethanol and distilled water (80:20) as the vehicle. KETO was incorporated as 5% w/w of PVP. Physical properties of resulting solutions (viscosity, electrical conductivity, density and surface tension) were obtained. Formulations were electrosprayed through both single and novel MTEs under EHDA conditions at various flow rates (5–300 μl/min) and applied voltages (0–30 kV). The atomization process using MTEs and single nozzle was monitored at using various process parameters via a digital optical camera. Resulting particles were collected 200 mm below processing heads and were analyzed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Digital recordings confirmed stable MTE jetting at higher flow rates. Electron http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Drug Delivery and Translational Research Springer Journals

Loading next page...
 
/lp/springer_journal/stable-increased-formulation-atomization-using-a-multi-tip-nozzle-iDXKMRJaJy
Publisher
Springer Journals
Copyright
Copyright © 2018 by Controlled Release Society
Subject
Biomedicine; Pharmaceutical Sciences/Technology
ISSN
2190-393X
eISSN
2190-3948
D.O.I.
10.1007/s13346-018-0518-4
Publisher site
See Article on Publisher Site

Abstract

Electrohydrodynamic atomization (EHDA) is an emerging technique for the production of micron and nano-scaled particles. The process often involves Taylor cone enablement, which results in a fine spray yielding formulated droplets, which then undergo drying during deposition. In this work, novel multi-tip emitter (MTE) devices were designed, engineered and utilized for potential up-scaled EHDA, by comparison with a conventional single-needle system. To demonstrate this, the active ketoprofen (KETO) was formulated using polyvinylpyrrolidone (PVP) polymer as the matrix material. Here, PVP polymer (5% w/v)solution was prepared using ethanol and distilled water (80:20) as the vehicle. KETO was incorporated as 5% w/w of PVP. Physical properties of resulting solutions (viscosity, electrical conductivity, density and surface tension) were obtained. Formulations were electrosprayed through both single and novel MTEs under EHDA conditions at various flow rates (5–300 μl/min) and applied voltages (0–30 kV). The atomization process using MTEs and single nozzle was monitored at using various process parameters via a digital optical camera. Resulting particles were collected 200 mm below processing heads and were analyzed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Digital recordings confirmed stable MTE jetting at higher flow rates. Electron

Journal

Drug Delivery and Translational ResearchSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off