Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance

Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a... Tissue-specific or regulated expression of transgenes is desirable in order to prevent pleiotropic side effects of putatively harmful transgene products as well as loss of energy resources due to unnecessary accumulation of transgene products. Epidermis-specific expression would be useful for many defense-related genes directed against attack by fungal pathogens that enter the plant body by direct penetration through the epidermis. In an approach to enhance resistance of wheat to the powdery mildew fungus Blumeria graminis f.sp. tritici, a novel epidermis-specific promoter was developed and used for expression of two defense-related genes. A 2.3 kb fragment of the wheat GstA1 promoter in combination with an intron-containing part of the wheat WIR1a gene was found to drive strong and constitutive transient expression in wheat epidermis. This promoter–intron combination was used for overexpression of oxalate oxidase9f-2.8 and TaPERO peroxidase, two defense-related wheat genes expressed in inner leaf tissues. Expression studies of several transgenic lines by in situ oxalate-oxidase staining, RNA and protein blot analyses, as well as real-time PCR, demonstrated strong and constitutive transgene expression in the shoot epidermis. Transient as well as stable over-expression of the TaPERO peroxidase gene in wheat epidermis under the control of the GstA1i promoter resulted in enhanced resistance against Blumeria graminis f.sp. tritici, whereas oxalate-oxidase overexpression had no effect in either system. The data suggest that the wheat GstA1 promoter in combination with the WIR1a intron is useful for transgenic approaches to fungal disease resistance in cereals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance

Loading next page...
 
/lp/springer_journal/stable-expression-of-a-defense-related-gene-in-wheat-epidermis-under-uTLrGSXHkO
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-7564-7
Publisher site
See Article on Publisher Site

Abstract

Tissue-specific or regulated expression of transgenes is desirable in order to prevent pleiotropic side effects of putatively harmful transgene products as well as loss of energy resources due to unnecessary accumulation of transgene products. Epidermis-specific expression would be useful for many defense-related genes directed against attack by fungal pathogens that enter the plant body by direct penetration through the epidermis. In an approach to enhance resistance of wheat to the powdery mildew fungus Blumeria graminis f.sp. tritici, a novel epidermis-specific promoter was developed and used for expression of two defense-related genes. A 2.3 kb fragment of the wheat GstA1 promoter in combination with an intron-containing part of the wheat WIR1a gene was found to drive strong and constitutive transient expression in wheat epidermis. This promoter–intron combination was used for overexpression of oxalate oxidase9f-2.8 and TaPERO peroxidase, two defense-related wheat genes expressed in inner leaf tissues. Expression studies of several transgenic lines by in situ oxalate-oxidase staining, RNA and protein blot analyses, as well as real-time PCR, demonstrated strong and constitutive transgene expression in the shoot epidermis. Transient as well as stable over-expression of the TaPERO peroxidase gene in wheat epidermis under the control of the GstA1i promoter resulted in enhanced resistance against Blumeria graminis f.sp. tritici, whereas oxalate-oxidase overexpression had no effect in either system. The data suggest that the wheat GstA1 promoter in combination with the WIR1a intron is useful for transgenic approaches to fungal disease resistance in cereals.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 14, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off