Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour

Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic... We generated and characterized transgenic rye synthesizing substantial amounts of high-molecular-weight glutenin subunits (HMW-GS) from wheat. The unique bread-making characteristic of wheat flour is closely related to the elasticity and extensibility of the gluten proteins stored in the starchy endosperm, particularly the HMW-GS. Rye flour has poor bread-making quality, despite the extensive sequence and structure similarities of wheat and rye HMW-GS. The HMW-GS 1Dx5 and 1Dy10 genes from wheat, known to be associated with good bread-making quality were introduced into a homozygous rye inbred line by the biolistic gene transfer. The transgenic plants, regenerated from immature embryo derived callus cultures were normal, fertile, and transmitted the transgenes stably to the sexual progeny, as shown by Southern blot and SDS-PAGE analysis. Flour proteins were extracted by means of a modified Osborne fractionation from wildtype (L22) as well as transgenic rye expressing 1Dy10 (L26) or 1Dx5 and 1Dy10 (L8) and were quantified by RP-HPLC and GP-HPLC. The amount of transgenic HMW-GS in homozygous rye seeds represented 5.1% (L26) or 16.3% (L8) of the total extracted protein and 17% (L26) or 29% (L8) of the extracted glutelin fraction. The amount of polymerized glutelins was significantly increased in transgenic rye (L26) and more than tripled in transgenic rye (L8) compared to wildtype (L22). Gel permeation HPLC of the un-polymerized fractions revealed that the transgenic rye flours contained a significantly lower proportion of alcohol-soluble oligomeric proteins compared with the non-transgenic flour. The quantitative data indicate that the expression of wheat HMW-GS in rye leads to a high degree of polymerization of transgenic and native storage proteins, probably by formation of intermolecular disulfide bonds. Even γ-40k secalins, which occur in non-transgenic rye as monomers, are incorporated into these polymeric structures. The combination 1Dx5 + 1Dy10 showed stronger effects than 1Dy10 alone. Our results are the first example of genetic engineering to significantly alter the polymerization and composition of storage proteins in rye. This may be an important step towards improving bread-making properties of rye whilst conserving its superior stress resistance. Plant Molecular Biology Springer Journals

Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour

Loading next page...
Kluwer Academic Publishers
Copyright © 2004 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial