Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling

Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling Most hovering aircraft such as helicopters and animal-inspired flapping-wing flyers are dynamically unstable in flight, quickly tumbling in the absence of feedback control. The addition of feedback loops can stabilize, but at the cost of additional sensing and actuation components. This can add expense, weight, and complexity. An alternative to feedback is the use of passive mechanisms such as aerodynamic drag to stabilize attitude. Previous work has suggested that small aircraft can be stabilized by adding air dampers above and below the center of mass. We present flight tests of an insect-scale robot operating under this principle. When controlled to a constant altitude, it remains stably upright while undergoing cyclic attitude oscillations. To characterize these oscillations, we present a nonlinear analytic model derived from first principles that reproduces the observed behavior. Using numerical simulation, we analyze how changing damper size, position, mass, and midpoint offset affect these oscillations, building on previous work that considered only a single configuration. Our results indicate that only by increasing damper size can lateral oscillation amplitude be significantly reduced, at the cost of increased damper mass. Additionally, we show that as scale diminishes, the damper size must get relatively larger. This suggests that smaller damper-equipped robots must operate in low-wind areas or in boundary-layer flow near surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling

Loading next page...
 
/lp/springer_journal/stabilizing-air-dampers-for-hovering-aerial-robotics-design-insect-6kSxJjcGcz
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9623-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial