Stabilization of microwave arc plasmas of hydrocarbons at atmospheric pressure

Stabilization of microwave arc plasmas of hydrocarbons at atmospheric pressure Pure hydrocarbon plasmas have been generated at low pressures with good efficiency using methane as a reactant. Hydrocarbon plasma discharges containing high energy, free radical, and ionized intermediates were analyzed in situ using emission spectroscopy. Emission spectra were correlated with analytical data obtained from resultant product mixtures and literature assignments of emission bands in order to identify these intermediates. Stabilization of atmospheric methane plasmas using argon as a diluent has also been demonstrated in this study. Emission spectroscopy has also been used to identify reaction intermediates formed in plasmas at high pressures. Distinct differences in plasma discharges have been observed as a function of pressure, power, and methane concentrations at the molecular level using in situ spectroscopic techniques. Research on Chemical Intermediates Springer Journals

Stabilization of microwave arc plasmas of hydrocarbons at atmospheric pressure

Loading next page...
Brill Academic Publishers
Copyright © 2000 by VSP
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial