Stabilization of cylinder wakes in shallow water flows by means of roughness elements: an experimental study

Stabilization of cylinder wakes in shallow water flows by means of roughness elements: an... Shallow wakes that occur in a wide range of natural flows tend to generate instabilities that develop into large, 2D coherent structures (2DCS). We present the results of an experimental study to stabilize shallow wakes by local, enhanced bottom roughness. Two successful stabilization strategies are compared to a base case of an unsteady bubble wake. First, localized bed roughness is placed in the lateral shear layers near the shoulders of the cylinder. Second, a local roughness element is placed at the end of the recirculation bubble, in the downstream region where large-scale vortices would normally shed. Dye visualization is used to assess the qualitative behavior of the wake, and two-component laser Doppler velocimetry (LDV) measurements are made to measure the Reynolds stress distributions and time-averaged velocity profiles. In both stabilization cases, a minimum patch size of the enhanced roughness elements is required for stabilization, which depends on the momentum thickness of the shear layers and the locations of enhanced Reynolds shear stresses. The main effect of the wake stabilization is a reduction in momentum exchange with the ambient flow due to damping of the large 2DCS. This reduction in eddy diffusivity results in a narrower wake and a slower decay of the centerline velocity deficit with downstream distance compared to the base case of an unsteady bubble wake. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Stabilization of cylinder wakes in shallow water flows by means of roughness elements: an experimental study

Loading next page...
 
/lp/springer_journal/stabilization-of-cylinder-wakes-in-shallow-water-flows-by-means-of-Oo6cf1I3PX
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0918-8
Publisher site
See Article on Publisher Site

Abstract

Shallow wakes that occur in a wide range of natural flows tend to generate instabilities that develop into large, 2D coherent structures (2DCS). We present the results of an experimental study to stabilize shallow wakes by local, enhanced bottom roughness. Two successful stabilization strategies are compared to a base case of an unsteady bubble wake. First, localized bed roughness is placed in the lateral shear layers near the shoulders of the cylinder. Second, a local roughness element is placed at the end of the recirculation bubble, in the downstream region where large-scale vortices would normally shed. Dye visualization is used to assess the qualitative behavior of the wake, and two-component laser Doppler velocimetry (LDV) measurements are made to measure the Reynolds stress distributions and time-averaged velocity profiles. In both stabilization cases, a minimum patch size of the enhanced roughness elements is required for stabilization, which depends on the momentum thickness of the shear layers and the locations of enhanced Reynolds shear stresses. The main effect of the wake stabilization is a reduction in momentum exchange with the ambient flow due to damping of the large 2DCS. This reduction in eddy diffusivity results in a narrower wake and a slower decay of the centerline velocity deficit with downstream distance compared to the base case of an unsteady bubble wake.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 8, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off