Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part I: Local Behavior

Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part I: Local... Many estimation problems amount to minimizing a piecewise C m objective function, with m ≥ 2, composed of a quadratic data-fidelity term and a general regularization term. It is widely accepted that the minimizers obtained using non-convex and possibly non-smooth regularization terms are frequently good estimates. However, few facts are known on the ways to control properties of these minimizers. This work is dedicated to the stability of the minimizers of such objective functions with respect to variations of the data. It consists of two parts: first we consider all local minimizers, whereas in a second part we derive results on global minimizers. In this part we focus on data points such that every local minimizer is isolated and results from a C m-1 local minimizer function, defined on some neighborhood. We demonstrate that all data points for which this fails form a set whose closure is negligible. Applied Mathematics and Optimization Springer Journals

Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part I: Local Behavior

Loading next page...
Copyright © 2006 by Springer
Mathematics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial