Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Stability of the laminar boundary-layer flow behind a roughness element

Stability of the laminar boundary-layer flow behind a roughness element Roughness elements in laminar boundary layers generate both high shear layers and streaky structures. Because these phenomena interact, it is difficult to precisely ascertain the dominant instability mechanisms. With the goal of explicating such interactions, we study the stability of a laminar boundary layer subject to a single roughness element at a Reynolds number subcritical of bypass transition. Our work involves two parts: bi-global linear stability theory (LST) analysis and corroborating experimental measurements. Linear stability analysis of a flat-plate boundary layer perturbed by streamwise streaks reveals the presence of several unstable modes. Of the dominant two modes, one exhibits spanwise symmetry and the other is antisymmetric. These modes are termed ‘varicose’ and ‘sinuous,’ respectively. Corroborating experiments were conducted in the laminar water channel of the University of Stuttgart. By simultaneously traversing two hot-film probes, we are able to confirm the presence of both eigenmodes predicted by LST and to extract relevant data for each: eigenvalues, eigenfunctions, growth rates and phase distributions. The main part of the experiments has been performed under ‘natural’ conditions, i.e., in the absence of external forcing. As the amplitude of the sinuous part of the results is much smaller than the varicose one and hence affected by measurement noise, a case with asymmetric external forcing is presented as well. Despite some deficiencies of the setup, it is possible to enhance the sinuous mode with respect to the unforced case and to confirm its existence as an eigenmode of the flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Stability of the laminar boundary-layer flow behind a roughness element

Experiments in Fluids , Volume 56 (1) – Jan 11, 2015

Loading next page...
 
/lp/springer_journal/stability-of-the-laminar-boundary-layer-flow-behind-a-roughness-2Npsjn0mbt

References (29)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-014-1878-2
Publisher site
See Article on Publisher Site

Abstract

Roughness elements in laminar boundary layers generate both high shear layers and streaky structures. Because these phenomena interact, it is difficult to precisely ascertain the dominant instability mechanisms. With the goal of explicating such interactions, we study the stability of a laminar boundary layer subject to a single roughness element at a Reynolds number subcritical of bypass transition. Our work involves two parts: bi-global linear stability theory (LST) analysis and corroborating experimental measurements. Linear stability analysis of a flat-plate boundary layer perturbed by streamwise streaks reveals the presence of several unstable modes. Of the dominant two modes, one exhibits spanwise symmetry and the other is antisymmetric. These modes are termed ‘varicose’ and ‘sinuous,’ respectively. Corroborating experiments were conducted in the laminar water channel of the University of Stuttgart. By simultaneously traversing two hot-film probes, we are able to confirm the presence of both eigenmodes predicted by LST and to extract relevant data for each: eigenvalues, eigenfunctions, growth rates and phase distributions. The main part of the experiments has been performed under ‘natural’ conditions, i.e., in the absence of external forcing. As the amplitude of the sinuous part of the results is much smaller than the varicose one and hence affected by measurement noise, a case with asymmetric external forcing is presented as well. Despite some deficiencies of the setup, it is possible to enhance the sinuous mode with respect to the unforced case and to confirm its existence as an eigenmode of the flow.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 11, 2015

There are no references for this article.