Stability of structural materials based on ZrO2

Stability of structural materials based on ZrO2 The thermal and mechanical stability of some high-strength ceramic materials from partially stabilized ZrO2 manufactured from various domestic and imported powders, including coprecipitated, sol-gel, and hydrothermal ones, with the use of CIP and sintering is considered. The thermal stability is tested under conditions close to the operating ones, i.e., under long-duration holds at 1000 and 1550°C and in water quenching. The mechanical stability is determined in impact-erosion wear and under combined loads of high pressure and multiple indentations by solid particles. It is shown that all the materials undergo degradation of various degrees but those most durable under normal conditions (hydrothermal and sol-gel materials, ceramics manufactured from imported press powders) are least stable. They have widely fluctuating properties under cyclic high-temperature loads, endure 900-1400°C, and withstand a pressure of at most 1.0-2.0 GPa in an abrasive, just like standard corundum ceramics; however, they are characterized by maximum wear resistance. At the same time, an original material from commercial coprecipitated PSZ powder has quite different features; its thermal stability allows it to withstand repeated quenchings from 1550°C in water, and the mechanical strength can attain 2.6-2.8 GPa, exceeding the strength of quenched tool steels in similar situations. Due to its refractoriness (2700°C) and chemical stability this material is the most versatile in operating under extreme conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Stability of structural materials based on ZrO2

Loading next page...
 
/lp/springer_journal/stability-of-structural-materials-based-on-zro2-iXh9cQBNxG
Publisher
Springer US
Copyright
Copyright © 1998 by Plenum Publishing Corporationn
Subject
Chemistry; Characterization and Evaluation of Materials; Materials Science; Ceramics, Glass, Composites, Natural Methods
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/BF02764271
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial