Stability of ribonuclease A under hydrothermal conditions in relation to the origin-of-life hypothesis: verification with the hydrothermal micro-flow reactor system

Stability of ribonuclease A under hydrothermal conditions in relation to the origin-of-life... The stability of ribonuclease A (RNase A) was quantitatively investigated with the hydrothermal micro-flow reactor system (HFRS) at temperatures of up to 275 °C from the viewpoint of the hydrothermal origin-of-life hypothesis. The enzymatic activity of RNase A was studied with regard to the catalytic degradation of polynucleotides with anion-exchange high-performance liquid chromatography, while the degradation of RNase A to shorter molecules was analyzed by size exclusion chromatography (SEC) and mass spectrometry (MS). The degradation of RNase A started within 10 s at 200 °C, and the enzymatic activity disappeared almost completely after 25 s. SEC and MS analyses indicated that RNase A was thermally degraded to 2 large fragments, which, along with RNase A, were further decomposed to smaller fragments. This study showed that RNase A is fairly stable under normal conditions, but its enzymatic activity disappears rapidly at extremely high temperatures. The half life of RNase A and its fragments under hydrothermal conditions is comparable to or longer than the enzymatic reaction time scale of modern enzymes. Furthermore, this study demonstrates that HFRS is reliable and useful for verifying the stability of several proteins in fundamental and applied research as well as for studying the origin-of-life problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Stability of ribonuclease A under hydrothermal conditions in relation to the origin-of-life hypothesis: verification with the hydrothermal micro-flow reactor system

Loading next page...
 
/lp/springer_journal/stability-of-ribonuclease-a-under-hydrothermal-conditions-in-relation-UWU5E7ppzc
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media BV
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-009-0071-3
Publisher site
See Article on Publisher Site

Abstract

The stability of ribonuclease A (RNase A) was quantitatively investigated with the hydrothermal micro-flow reactor system (HFRS) at temperatures of up to 275 °C from the viewpoint of the hydrothermal origin-of-life hypothesis. The enzymatic activity of RNase A was studied with regard to the catalytic degradation of polynucleotides with anion-exchange high-performance liquid chromatography, while the degradation of RNase A to shorter molecules was analyzed by size exclusion chromatography (SEC) and mass spectrometry (MS). The degradation of RNase A started within 10 s at 200 °C, and the enzymatic activity disappeared almost completely after 25 s. SEC and MS analyses indicated that RNase A was thermally degraded to 2 large fragments, which, along with RNase A, were further decomposed to smaller fragments. This study showed that RNase A is fairly stable under normal conditions, but its enzymatic activity disappears rapidly at extremely high temperatures. The half life of RNase A and its fragments under hydrothermal conditions is comparable to or longer than the enzymatic reaction time scale of modern enzymes. Furthermore, this study demonstrates that HFRS is reliable and useful for verifying the stability of several proteins in fundamental and applied research as well as for studying the origin-of-life problem.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 13, 2009

References

  • Structural features of thermozymes
    Li, WE; Zhou, XX; Lu, P

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off