Stability of intracellular influenza virus nucleocapsid protein oligomers

Stability of intracellular influenza virus nucleocapsid protein oligomers Stability of A/Duck/Ukrainae/63 (H3N8) influenza virus intracellular NP oligomers was studied using reducing agents, denaturants, detergents, salts, various pH and a range of temperatures. The results obtained indicate that influenza virus NP oligomers are noncovalently stabilized, and NP subunits are not linked by disulfide bonds. NP oligomers are thermostable and SDS resistant. Urea and high ionic strength also do not dissociate avian influenza virus intracellular NP oligomers. However, NP oligomers are completely dissociated at pH < 5. The data obtained suggest that hydrophobic bonds together with the electrostatic interactions take part in the stabilization of compact conformation of influenza virus NP oligomers. It was also shown that intrachain disulfides revealed in nascent NPs are reduced in NP subunits of NP oligomers, and this probably contributes to the stability and compactness of the oligomers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Stability of intracellular influenza virus nucleocapsid protein oligomers

Loading next page...
 
/lp/springer_journal/stability-of-intracellular-influenza-virus-nucleocapsid-protein-jiDHWoK644
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-004-0425-5
Publisher site
See Article on Publisher Site

Abstract

Stability of A/Duck/Ukrainae/63 (H3N8) influenza virus intracellular NP oligomers was studied using reducing agents, denaturants, detergents, salts, various pH and a range of temperatures. The results obtained indicate that influenza virus NP oligomers are noncovalently stabilized, and NP subunits are not linked by disulfide bonds. NP oligomers are thermostable and SDS resistant. Urea and high ionic strength also do not dissociate avian influenza virus intracellular NP oligomers. However, NP oligomers are completely dissociated at pH < 5. The data obtained suggest that hydrophobic bonds together with the electrostatic interactions take part in the stabilization of compact conformation of influenza virus NP oligomers. It was also shown that intrachain disulfides revealed in nascent NPs are reduced in NP subunits of NP oligomers, and this probably contributes to the stability and compactness of the oligomers.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off