Stability of intracellular influenza virus nucleocapsid protein oligomers

Stability of intracellular influenza virus nucleocapsid protein oligomers Stability of A/Duck/Ukrainae/63 (H3N8) influenza virus intracellular NP oligomers was studied using reducing agents, denaturants, detergents, salts, various pH and a range of temperatures. The results obtained indicate that influenza virus NP oligomers are noncovalently stabilized, and NP subunits are not linked by disulfide bonds. NP oligomers are thermostable and SDS resistant. Urea and high ionic strength also do not dissociate avian influenza virus intracellular NP oligomers. However, NP oligomers are completely dissociated at pH < 5. The data obtained suggest that hydrophobic bonds together with the electrostatic interactions take part in the stabilization of compact conformation of influenza virus NP oligomers. It was also shown that intrachain disulfides revealed in nascent NPs are reduced in NP subunits of NP oligomers, and this probably contributes to the stability and compactness of the oligomers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Stability of intracellular influenza virus nucleocapsid protein oligomers

Loading next page...
 
/lp/springer_journal/stability-of-intracellular-influenza-virus-nucleocapsid-protein-jiDHWoK644
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-004-0425-5
Publisher site
See Article on Publisher Site

Abstract

Stability of A/Duck/Ukrainae/63 (H3N8) influenza virus intracellular NP oligomers was studied using reducing agents, denaturants, detergents, salts, various pH and a range of temperatures. The results obtained indicate that influenza virus NP oligomers are noncovalently stabilized, and NP subunits are not linked by disulfide bonds. NP oligomers are thermostable and SDS resistant. Urea and high ionic strength also do not dissociate avian influenza virus intracellular NP oligomers. However, NP oligomers are completely dissociated at pH < 5. The data obtained suggest that hydrophobic bonds together with the electrostatic interactions take part in the stabilization of compact conformation of influenza virus NP oligomers. It was also shown that intrachain disulfides revealed in nascent NPs are reduced in NP subunits of NP oligomers, and this probably contributes to the stability and compactness of the oligomers.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off