Stability of Emulsions Using a New Natural Emulsifier: Sugar Beet Extract (Beta vulgaris L.)

Stability of Emulsions Using a New Natural Emulsifier: Sugar Beet Extract (Beta vulgaris L.) This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Biophysics Springer Journals

Stability of Emulsions Using a New Natural Emulsifier: Sugar Beet Extract (Beta vulgaris L.)

Loading next page...
 
/lp/springer_journal/stability-of-emulsions-using-a-new-natural-emulsifier-sugar-beet-ghDw0NI60n
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Chemistry; Food Science; Biological and Medical Physics, Biophysics; Analytical Chemistry
ISSN
1557-1858
eISSN
1557-1866
D.O.I.
10.1007/s11483-017-9482-7
Publisher site
See Article on Publisher Site

Abstract

This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.

Journal

Food BiophysicsSpringer Journals

Published: May 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off