Stability of Development and Variability in Morphological Traits in a Natural Population of Drosophila melanogaster: Seasonal Dynamics in 1999

Stability of Development and Variability in Morphological Traits in a Natural Population of... Seasonal dynamics of developmental stability and variability of morphological traits was examined in a natural population of Drosophila melanogaster in order to compare these two parameters as indicators of temperature stress. Morphometric (thorax length and wing length) and meristic (number of sternopelural and orbital bristles) were studied. Variability was measured as the coefficient of variation. Stability of development was estimated as fluctuating asymmetry (FA) of bilateral traits. Thorax length and wing length did not exhibit consistent seasonal trends whereas wing loading significantly decreased. Significant seasonal changes in FA were not detected in any trait examined. Two traits showed reduced variation in autumn. The use of FA as an indicator of ecological stresses in insects is discussed on the basis of these results and the literature evidence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Stability of Development and Variability in Morphological Traits in a Natural Population of Drosophila melanogaster: Seasonal Dynamics in 1999

Loading next page...
 
/lp/springer_journal/stability-of-development-and-variability-in-morphological-traits-in-a-GNU50q0yRu
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1009070625877
Publisher site
See Article on Publisher Site

Abstract

Seasonal dynamics of developmental stability and variability of morphological traits was examined in a natural population of Drosophila melanogaster in order to compare these two parameters as indicators of temperature stress. Morphometric (thorax length and wing length) and meristic (number of sternopelural and orbital bristles) were studied. Variability was measured as the coefficient of variation. Stability of development was estimated as fluctuating asymmetry (FA) of bilateral traits. Thorax length and wing length did not exhibit consistent seasonal trends whereas wing loading significantly decreased. Significant seasonal changes in FA were not detected in any trait examined. Two traits showed reduced variation in autumn. The use of FA as an indicator of ecological stresses in insects is discussed on the basis of these results and the literature evidence.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off