Stability of Anionic Complexes in Halide Melts of Bivalent Metals

Stability of Anionic Complexes in Halide Melts of Bivalent Metals The effect of volume variation at the possible dissociation equilibria of (MX4)2– anionic complexes in halide melts of bivalent metals are analyzed in terms of the mean-sphere approximation (MSA) of the statistical theory. Within the framework of the simplified model of charged hard spheres of different diameters and valences, the complete system of equilibrium equations is obtained, i.e., equations of the law of mass action and equations of state. This system makes possible self-correlated calculations of both the equilibrium concentration of autocomplexes and the melt density. It is shown that the simplest approximation of the complex diameter as the treble diameter of simple ions overestimates the effects of volume variations when considering dissociation. Taking into account the superposition of spheres makes it possible to describe the smoother volume variations with the temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Electrochemistry Springer Journals

Stability of Anionic Complexes in Halide Melts of Bivalent Metals

Loading next page...
 
/lp/springer_journal/stability-of-anionic-complexes-in-halide-melts-of-bivalent-metals-zpWkRRBfEe
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Chemistry; Electrochemistry; Physical Chemistry
ISSN
1023-1935
eISSN
1608-3342
D.O.I.
10.1134/S1023193518050087
Publisher site
See Article on Publisher Site

Abstract

The effect of volume variation at the possible dissociation equilibria of (MX4)2– anionic complexes in halide melts of bivalent metals are analyzed in terms of the mean-sphere approximation (MSA) of the statistical theory. Within the framework of the simplified model of charged hard spheres of different diameters and valences, the complete system of equilibrium equations is obtained, i.e., equations of the law of mass action and equations of state. This system makes possible self-correlated calculations of both the equilibrium concentration of autocomplexes and the melt density. It is shown that the simplest approximation of the complex diameter as the treble diameter of simple ions overestimates the effects of volume variations when considering dissociation. Taking into account the superposition of spheres makes it possible to describe the smoother volume variations with the temperature.

Journal

Russian Journal of ElectrochemistrySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off