Access the full text.
Sign up today, get DeepDyve free for 14 days.
The effect of volume variation at the possible dissociation equilibria of (MX4)2– anionic complexes in halide melts of bivalent metals are analyzed in terms of the mean-sphere approximation (MSA) of the statistical theory. Within the framework of the simplified model of charged hard spheres of different diameters and valences, the complete system of equilibrium equations is obtained, i.e., equations of the law of mass action and equations of state. This system makes possible self-correlated calculations of both the equilibrium concentration of autocomplexes and the melt density. It is shown that the simplest approximation of the complex diameter as the treble diameter of simple ions overestimates the effects of volume variations when considering dissociation. Taking into account the superposition of spheres makes it possible to describe the smoother volume variations with the temperature.
Russian Journal of Electrochemistry – Springer Journals
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.