Stability-Indicating UV-Spectrophotometric Assay of Diethylcarbamazine Citrate in Pharmaceuticals

Stability-Indicating UV-Spectrophotometric Assay of Diethylcarbamazine Citrate in Pharmaceuticals Diethylcarbamazine citrate (DEC) is a piperazine anthelmintic agent indicated for the treatment of individual patients with lymphatic filariasis. Two simple and sensitive UV-spectrophotometric techniques have been developed and validated for the determination of this drug in bulk parent substance and tablets, based on the measurement of the absorbance of DEC solution either in 0.1M HCl at 210 nm (method A) or in 0.1M H2SO4 at 209 nm (method B). Beer’s law was obeyed over the concentration ranges of 1.25 – 25.0 and 2.5 – 30.0 μg · mL-1, for method Aand method B, respectively, and the corresponding molar absorptivity values were 2.02 × 104 and 1.21 × 104 L mol-1 · cm-1. The limits of detection (LOD) and quantification (LOQ) were, respectively, 0.26 and 0.78 μg · mL-1 (method A), and 0.16 and 0.49 μg · mL-1 (method B). These methods were assessed for intra-day and inter-day accuracy and precision, as well as robustness and ruggedness. Both methods were applied to one brand of tablets with percentage label claim of 101.7 and 100.8 for method A and method B, respectively, and the standard deviation was below 2%. In order to establish the stability-indicating ability of these methods, the drug was analyzed after subjecting it to acid and base hydrolysis, oxidation, heat and light stress conditions and the results indicated that the drug degraded extensively under both base- and oxidative-stress conditions, and remained intact under other stress conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pharmaceutical Chemistry Journal Springer Journals

Stability-Indicating UV-Spectrophotometric Assay of Diethylcarbamazine Citrate in Pharmaceuticals

Loading next page...
 
/lp/springer_journal/stability-indicating-uv-spectrophotometric-assay-of-diethylcarbamazine-pGy8yymshg
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Pharmacy; Pharmacy; Pharmacology/Toxicology; Organic Chemistry
ISSN
0091-150X
eISSN
1573-9031
D.O.I.
10.1007/s11094-018-1805-6
Publisher site
See Article on Publisher Site

Abstract

Diethylcarbamazine citrate (DEC) is a piperazine anthelmintic agent indicated for the treatment of individual patients with lymphatic filariasis. Two simple and sensitive UV-spectrophotometric techniques have been developed and validated for the determination of this drug in bulk parent substance and tablets, based on the measurement of the absorbance of DEC solution either in 0.1M HCl at 210 nm (method A) or in 0.1M H2SO4 at 209 nm (method B). Beer’s law was obeyed over the concentration ranges of 1.25 – 25.0 and 2.5 – 30.0 μg · mL-1, for method Aand method B, respectively, and the corresponding molar absorptivity values were 2.02 × 104 and 1.21 × 104 L mol-1 · cm-1. The limits of detection (LOD) and quantification (LOQ) were, respectively, 0.26 and 0.78 μg · mL-1 (method A), and 0.16 and 0.49 μg · mL-1 (method B). These methods were assessed for intra-day and inter-day accuracy and precision, as well as robustness and ruggedness. Both methods were applied to one brand of tablets with percentage label claim of 101.7 and 100.8 for method A and method B, respectively, and the standard deviation was below 2%. In order to establish the stability-indicating ability of these methods, the drug was analyzed after subjecting it to acid and base hydrolysis, oxidation, heat and light stress conditions and the results indicated that the drug degraded extensively under both base- and oxidative-stress conditions, and remained intact under other stress conditions.

Journal

Pharmaceutical Chemistry JournalSpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off