Stability boundaries for vortex breakdowns and boundaries between oscillatory and steady swirling flow in a cylindrical annulus with a top rotating lid

Stability boundaries for vortex breakdowns and boundaries between oscillatory and steady swirling... The present numerical simulation is carried out to analyze the behaviors of vortex breakdown in a lid-driven swirling flow in cylindrical cavity with a thin axial stationary or rotating rod. The range of aspect ratio (AR) of the cavity considered is to be from 1.0 to 2.5. However, Reynolds number (Re) value, for a given AR, ranges from 1000 to any value till the topmost point on the boundary of steady vortex breakdown zone is achieved. This enclosed flow region is also referred as annulus cylindrical cavity. A systematic study has been carried out involving a large number of simulations to obtain one-vortex or two-vortex breakdown zones for steady lid-driven swirling flow in the annulus cylindrical cavity. Cases within the inner wall, i.e., the axial rod being stationary or rotating, have been considered. It is observed that the boundaries of zones and of vortex breakdowns shift due to the presence of stationary/co-rotating thin axial rod. These zones of vortex breakdowns are represented with plots in AR–Re plane for various rotating speeds of the axial rod. These plots give quick information regarding overall influence of the presence of the thin axial rod. The direction of rotation of the rod is important; the co-rotating rod has stabilizing effects, whereas counter-rotating rod tends to create unsteady flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Stability boundaries for vortex breakdowns and boundaries between oscillatory and steady swirling flow in a cylindrical annulus with a top rotating lid

Loading next page...
 
/lp/springer_journal/stability-boundaries-for-vortex-breakdowns-and-boundaries-between-0HsgeD3V00
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-018-1256-8
Publisher site
See Article on Publisher Site

Abstract

The present numerical simulation is carried out to analyze the behaviors of vortex breakdown in a lid-driven swirling flow in cylindrical cavity with a thin axial stationary or rotating rod. The range of aspect ratio (AR) of the cavity considered is to be from 1.0 to 2.5. However, Reynolds number (Re) value, for a given AR, ranges from 1000 to any value till the topmost point on the boundary of steady vortex breakdown zone is achieved. This enclosed flow region is also referred as annulus cylindrical cavity. A systematic study has been carried out involving a large number of simulations to obtain one-vortex or two-vortex breakdown zones for steady lid-driven swirling flow in the annulus cylindrical cavity. Cases within the inner wall, i.e., the axial rod being stationary or rotating, have been considered. It is observed that the boundaries of zones and of vortex breakdowns shift due to the presence of stationary/co-rotating thin axial rod. These zones of vortex breakdowns are represented with plots in AR–Re plane for various rotating speeds of the axial rod. These plots give quick information regarding overall influence of the presence of the thin axial rod. The direction of rotation of the rod is important; the co-rotating rod has stabilizing effects, whereas counter-rotating rod tends to create unsteady flow.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off