Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Squeezing and entanglement in multi-qutrit systems

Squeezing and entanglement in multi-qutrit systems We study squeezing and bipartite entanglement in a multi-qutrit system initially in a coherent state, initiated by the two-axis counter-twisting Hamiltonian in the presence and also absence of a magnetic field. We start with an initial coherent state which is neither squeezed nor entangled; however, it gains both properties as it is evolved by the Hamiltonian. Both squeezing and entanglement show an oscillatory behavior in time and stronger Hamiltonians correspond to smaller oscillation periods. Generation of almost continuous squeezing according to Kitagawa criterion seems feasible; however, off and on squeezing death is observed according to that of Wineland. The entanglement is diminished as the size of the system is increased, implying that the generation of strong entanglement in large multi-qutrit systems, instigated by the counter-twisting Hamiltonian, may not be feasible. Application of a magnetic field may have adverse effect on both squeezing and entanglement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Squeezing and entanglement in multi-qutrit systems

Loading next page...
 
/lp/springer_journal/squeezing-and-entanglement-in-multi-qutrit-systems-y8Vq0TjAK0

References (19)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
DOI
10.1007/s11128-013-0574-0
Publisher site
See Article on Publisher Site

Abstract

We study squeezing and bipartite entanglement in a multi-qutrit system initially in a coherent state, initiated by the two-axis counter-twisting Hamiltonian in the presence and also absence of a magnetic field. We start with an initial coherent state which is neither squeezed nor entangled; however, it gains both properties as it is evolved by the Hamiltonian. Both squeezing and entanglement show an oscillatory behavior in time and stronger Hamiltonians correspond to smaller oscillation periods. Generation of almost continuous squeezing according to Kitagawa criterion seems feasible; however, off and on squeezing death is observed according to that of Wineland. The entanglement is diminished as the size of the system is increased, implying that the generation of strong entanglement in large multi-qutrit systems, instigated by the counter-twisting Hamiltonian, may not be feasible. Application of a magnetic field may have adverse effect on both squeezing and entanglement.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 10, 2013

There are no references for this article.