SQR: a simple quantum representation of infrared images

SQR: a simple quantum representation of infrared images A simple quantum representation (SQR) of infrared images is proposed based on the characteristic that infrared images reflect infrared radiation energy of objects. The proposed SQR model is inspired from the Qubit Lattice representation for color images. Instead of the angle parameter of a qubit to store a color as in Qubit Lattice representation, probability of projection measurement is used to store the radiation energy value of each pixel for the first time in this model. Since the relationship between radiation energy values and probability values can be quantified for the limited radiation energy values, it makes the proposed model more clear. In the process of image preparation, only simple quantum gates are used, and the performance comparison with the latest flexible representation of quantum images reveals that SQR can achieve a quadratic speedup in quantum image preparation. Meanwhile, quantum infrared image operations can be performed conveniently based on SQR, including both the global operations and local operations. This paper provides a basic way to express infrared images in quantum computer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

SQR: a simple quantum representation of infrared images

Loading next page...
 
/lp/springer_journal/sqr-a-simple-quantum-representation-of-infrared-images-z4iZ8ZEijo
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0733-y
Publisher site
See Article on Publisher Site

Abstract

A simple quantum representation (SQR) of infrared images is proposed based on the characteristic that infrared images reflect infrared radiation energy of objects. The proposed SQR model is inspired from the Qubit Lattice representation for color images. Instead of the angle parameter of a qubit to store a color as in Qubit Lattice representation, probability of projection measurement is used to store the radiation energy value of each pixel for the first time in this model. Since the relationship between radiation energy values and probability values can be quantified for the limited radiation energy values, it makes the proposed model more clear. In the process of image preparation, only simple quantum gates are used, and the performance comparison with the latest flexible representation of quantum images reveals that SQR can achieve a quadratic speedup in quantum image preparation. Meanwhile, quantum infrared image operations can be performed conveniently based on SQR, including both the global operations and local operations. This paper provides a basic way to express infrared images in quantum computer.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 1, 2014

References

  • Quantum information and computation
    Bennett, CH; Divincenzo, DP
  • Quantum walks: a comprehensive review
    Venegas-Andraca, SE

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off