Spurious relationships arising from aggregate variables in linear regression

Spurious relationships arising from aggregate variables in linear regression Linear regressions that use aggregated values from a group variable such as a school or a neighborhood are commonplace in the social sciences. This paper uses Monte Carlo methods to demonstrate that aggregated variables produce spurious relationships with other dependent and independent variables in a model even when there are no underlying relationships among those variables. The size of the spurious relationships (or postulated effects) increases as the number of observations per group decreases. Although this problem is remedied by including the individual-level variable in the regression, the problem has not been discussed in the methodological literature. Accordingly, studies using aggregate variables must be interpreted with caution if the individual-level measurements are not available. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Spurious relationships arising from aggregate variables in linear regression

Loading next page...
 
/lp/springer_journal/spurious-relationships-arising-from-aggregate-variables-in-linear-tbU8ecVL7V
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-016-0335-0
Publisher site
See Article on Publisher Site

Abstract

Linear regressions that use aggregated values from a group variable such as a school or a neighborhood are commonplace in the social sciences. This paper uses Monte Carlo methods to demonstrate that aggregated variables produce spurious relationships with other dependent and independent variables in a model even when there are no underlying relationships among those variables. The size of the spurious relationships (or postulated effects) increases as the number of observations per group decreases. Although this problem is remedied by including the individual-level variable in the regression, the problem has not been discussed in the methodological literature. Accordingly, studies using aggregate variables must be interpreted with caution if the individual-level measurements are not available.

Journal

Quality & QuantitySpringer Journals

Published: Apr 4, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off