Spray Dried Formulation of 5-Fluorouracil Embedded with Probiotic Biomass: In Vitro and In Vivo Studies

Spray Dried Formulation of 5-Fluorouracil Embedded with Probiotic Biomass: In Vitro and In Vivo... The present study is utilizing the targeted therapeutic approach and antioxidant potential of selected probiotic biomass in mitigating toxic side effects of chemotherapeutic agents. Multicomponent carrier system consisting of 5-fluorouracil (5-FU) and selected probiotic strain with higher free radical scavenging activity was prepared using spray drying technique. Prepared spray dried microparticles were characterized for various physical, pharmaceutical, and biopharmaceutical properties including particle size, moisture content, entrapment efficiency, in vitro drug release, DSC, XRD, cell uptake, histopathology, and pharmacokinetic studies. In addition to the above, optimized formulation was subjected to in vivo targeting efficacy studies using radiographic technique. Optimized formulation meets the necessary physical requirement for pharmaceutical powder. X-ray studies revealed that the prepared spray dried formulations are able to target the colon. Pharmacokinetic endpoints with an extended t 1/2 and lower C max indicate lower systemic toxicity. Intact nature of colonic epithelium in experimental formulation clearly demonstrates the protective role of Lactobacillus rhamnosus in minimizing the harmful consequence induced by 5-FU. Existing outcomes provide the basis for a combination of targeted therapeutic approach with natural antioxidant capacity of potential probiotic strain which could help to mitigate the problems associated with traditional chemotherapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Probiotics and Antimicrobial Proteins Springer Journals

Spray Dried Formulation of 5-Fluorouracil Embedded with Probiotic Biomass: In Vitro and In Vivo Studies

Loading next page...
 
/lp/springer_journal/spray-dried-formulation-of-5-fluorouracil-embedded-with-probiotic-WOV8UvQJCZ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Chemistry; Chemistry/Food Science, general; Applied Microbiology; Microbiology; Protein Science; Nutrition
ISSN
1867-1306
eISSN
1867-1314
D.O.I.
10.1007/s12602-017-9258-x
Publisher site
See Article on Publisher Site

Abstract

The present study is utilizing the targeted therapeutic approach and antioxidant potential of selected probiotic biomass in mitigating toxic side effects of chemotherapeutic agents. Multicomponent carrier system consisting of 5-fluorouracil (5-FU) and selected probiotic strain with higher free radical scavenging activity was prepared using spray drying technique. Prepared spray dried microparticles were characterized for various physical, pharmaceutical, and biopharmaceutical properties including particle size, moisture content, entrapment efficiency, in vitro drug release, DSC, XRD, cell uptake, histopathology, and pharmacokinetic studies. In addition to the above, optimized formulation was subjected to in vivo targeting efficacy studies using radiographic technique. Optimized formulation meets the necessary physical requirement for pharmaceutical powder. X-ray studies revealed that the prepared spray dried formulations are able to target the colon. Pharmacokinetic endpoints with an extended t 1/2 and lower C max indicate lower systemic toxicity. Intact nature of colonic epithelium in experimental formulation clearly demonstrates the protective role of Lactobacillus rhamnosus in minimizing the harmful consequence induced by 5-FU. Existing outcomes provide the basis for a combination of targeted therapeutic approach with natural antioxidant capacity of potential probiotic strain which could help to mitigate the problems associated with traditional chemotherapy.

Journal

Probiotics and Antimicrobial ProteinsSpringer Journals

Published: Mar 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off