Spray analysis of a gasoline direct injector by means of two-phase PIV

Spray analysis of a gasoline direct injector by means of two-phase PIV The hollow-cone spray of a high-pressure swirl injector for a direct-injection spark-ignition (DISI) engine was investigated inside a pressure vessel by means of particle image velocimetry (PIV). As the interaction between the spray droplets and the ambient air is of particular interest for the mixture preparation process, two-phase PIV techniques were applied. To allow phase discrimination, fluorescent seeding particles were used to trace the gas phase. Because of the periodicity of piston engine injection, a statistical evaluation of ensemble-averaged fields to reduce cycle-to-cycle variations and to provide more general information about the two-phase flow was performed. Besides the general spray/air interaction process the investigation of the spray collapse at elevated ambient pressures was the main focus of the study. Future investigations of transient interaction processes require simultaneous techniques in combination with a high-speed camera to resolve the transient interaction phenomena. Therefore, optical filters that attenuate Mie-scattered light and transmit fluorescent light were used to collect both phases on the same image. Consequently, phase separation techniques were employed for data analysis. A masking and a peak separation technique are described and a comparison between the results of an instantaneous two-phase flow field in the spray cone of a DISI injector is presented in the paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spray analysis of a gasoline direct injector by means of two-phase PIV

Loading next page...
 
/lp/springer_journal/spray-analysis-of-a-gasoline-direct-injector-by-means-of-two-phase-piv-DhQ5m9z2nU
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0441-8
Publisher site
See Article on Publisher Site

Abstract

The hollow-cone spray of a high-pressure swirl injector for a direct-injection spark-ignition (DISI) engine was investigated inside a pressure vessel by means of particle image velocimetry (PIV). As the interaction between the spray droplets and the ambient air is of particular interest for the mixture preparation process, two-phase PIV techniques were applied. To allow phase discrimination, fluorescent seeding particles were used to trace the gas phase. Because of the periodicity of piston engine injection, a statistical evaluation of ensemble-averaged fields to reduce cycle-to-cycle variations and to provide more general information about the two-phase flow was performed. Besides the general spray/air interaction process the investigation of the spray collapse at elevated ambient pressures was the main focus of the study. Future investigations of transient interaction processes require simultaneous techniques in combination with a high-speed camera to resolve the transient interaction phenomena. Therefore, optical filters that attenuate Mie-scattered light and transmit fluorescent light were used to collect both phases on the same image. Consequently, phase separation techniques were employed for data analysis. A masking and a peak separation technique are described and a comparison between the results of an instantaneous two-phase flow field in the spray cone of a DISI injector is presented in the paper.

Journal

Experiments in FluidsSpringer Journals

Published: May 3, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off