Spray analysis of a gasoline direct injector by means of two-phase PIV

Spray analysis of a gasoline direct injector by means of two-phase PIV The hollow-cone spray of a high-pressure swirl injector for a direct-injection spark-ignition (DISI) engine was investigated inside a pressure vessel by means of particle image velocimetry (PIV). As the interaction between the spray droplets and the ambient air is of particular interest for the mixture preparation process, two-phase PIV techniques were applied. To allow phase discrimination, fluorescent seeding particles were used to trace the gas phase. Because of the periodicity of piston engine injection, a statistical evaluation of ensemble-averaged fields to reduce cycle-to-cycle variations and to provide more general information about the two-phase flow was performed. Besides the general spray/air interaction process the investigation of the spray collapse at elevated ambient pressures was the main focus of the study. Future investigations of transient interaction processes require simultaneous techniques in combination with a high-speed camera to resolve the transient interaction phenomena. Therefore, optical filters that attenuate Mie-scattered light and transmit fluorescent light were used to collect both phases on the same image. Consequently, phase separation techniques were employed for data analysis. A masking and a peak separation technique are described and a comparison between the results of an instantaneous two-phase flow field in the spray cone of a DISI injector is presented in the paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spray analysis of a gasoline direct injector by means of two-phase PIV

Loading next page...
 
/lp/springer_journal/spray-analysis-of-a-gasoline-direct-injector-by-means-of-two-phase-piv-DhQ5m9z2nU
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0441-8
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial