Spot nanofinishing using ball nose magnetorheological solid rotating core tool

Spot nanofinishing using ball nose magnetorheological solid rotating core tool The spot nanofinishing of surface plays an important role for improving the surface quality of miniature mechanical, electronics, and optics components. The nano-level finishing of these miniature components is highly demanded in today’s industry to fulfill the operational and functional requirement. The principal innovation of the present work is generating uniform magnetic field at the end of a magnetizable rotating core tool for providing a uniform surface roughness on a spot finishing of precision components. To fulfill this requirement, a ball nose magnetorheological nanofinishing process based on solid rotating core tool is developed. The existing ball end magnetorheological finishing (BEMRF) process uses a rotating core with central hole for flow of polishing fluid at the tool end surface. Due to central hole inside the rotating core, a non-uniform magnetic flux density has been experienced at the tool end surface which may result in non-uniform surface roughness in spot finishing, i.e., on a fixed location without any X-Y-axis linear feed rates. The magnetostatic finite element analysis clearly revealed the uniform magnetic flux density at the end surface of the solid rotating core tool than existing BEMRF tool core having central hole. The experimentation has been carried out for spot finishing on ferromagnetic workpiece surface in order to study the variation in surface roughness values. The present ball nose magnetorheological finishing process with solid rotating core tool produced uniform average surface roughness values as 20 nm from 290 nm after 90 min of spot finishing on the ferromagnetic workpiece surface. The experimental results confirmed the effectiveness of generating uniform magnetic field at the end of a magnetizable rotating core tool for a spot uniform nanofinishing of precision components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Spot nanofinishing using ball nose magnetorheological solid rotating core tool

Loading next page...
 
/lp/springer_journal/spot-nanofinishing-using-ball-nose-magnetorheological-solid-rotating-uCvt4QZaQw
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0166-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial