Spontaneous Phase Transfer-Mediated Selective Removal of Heavy Metal Ions Using Biocompatible Oleic Acid

Spontaneous Phase Transfer-Mediated Selective Removal of Heavy Metal Ions Using Biocompatible... Here, we propose an environmentally benign removal technique for heavy metal ions based on selective and spontaneous transfer to oleic acid. The ions can be removed via (1) the selective and rapid complexation with the carboxylic end of oleic acid at an oleic acid/water interface, and (2) the diffusion of such complex into the oleic acid layer. A wide variety of heavy metal ions such as Cu2+, Pb2+, Zn2+, and Ni2+ can be selectively removed over K+ and Na+. For example, the concentration of Cu2+ is reduced to below 1.3 ppm within 24 h, which corresponds to the level of Cu2+ permitted by the Environmental Protection Agency. The addition of ethylenediamine ligand to the metal ion solutions is also shown to enhance the phase transfer. The removal efficiency is increased by up to 6 times when compared with that in the absence of the ligand and follows the order, Cu2+ (99%) > Pb2+ (96%) > Zn2+ (95%) > Ni2+ (65%). Moreover, the removal time can be shortened from 24 h to 1 h. The effect of an emulsion induced by a mechanical agitation on the removal of heavy metal ion is also studied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Spontaneous Phase Transfer-Mediated Selective Removal of Heavy Metal Ions Using Biocompatible Oleic Acid

Loading next page...
 
/lp/springer_journal/spontaneous-phase-transfer-mediated-selective-removal-of-heavy-metal-w6XII07tvj
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-17092-9
Publisher site
See Article on Publisher Site

Abstract

Here, we propose an environmentally benign removal technique for heavy metal ions based on selective and spontaneous transfer to oleic acid. The ions can be removed via (1) the selective and rapid complexation with the carboxylic end of oleic acid at an oleic acid/water interface, and (2) the diffusion of such complex into the oleic acid layer. A wide variety of heavy metal ions such as Cu2+, Pb2+, Zn2+, and Ni2+ can be selectively removed over K+ and Na+. For example, the concentration of Cu2+ is reduced to below 1.3 ppm within 24 h, which corresponds to the level of Cu2+ permitted by the Environmental Protection Agency. The addition of ethylenediamine ligand to the metal ion solutions is also shown to enhance the phase transfer. The removal efficiency is increased by up to 6 times when compared with that in the absence of the ligand and follows the order, Cu2+ (99%) > Pb2+ (96%) > Zn2+ (95%) > Ni2+ (65%). Moreover, the removal time can be shortened from 24 h to 1 h. The effect of an emulsion induced by a mechanical agitation on the removal of heavy metal ion is also studied.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off