Spontaneous Gating of Olfactory Cyclic-Nucleotide-Gated Channels

Spontaneous Gating of Olfactory Cyclic-Nucleotide-Gated Channels In vertebrates, cilia on the olfactory receptor neurons have a high density of cyclic-nucleotide-gated (CNG) channels. During transduction of odorous stimuli, cyclic AMP is formed. cAMP gates the CNG channels and this initiates the neuronal depolarization. Here it is shown that the ciliary CNG channels also open spontaneously. In the absence of odorants and second messengers, olfactory cilia have a small basal conductance to cations. Part of this conductance is similar to the cAMP-activated conductance in its sensitivity to channel inhibitors and divalent cations. The basal conductance may help to stabilize the neuronal membrane potential while limiting the sensitivity of odorant detection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Spontaneous Gating of Olfactory Cyclic-Nucleotide-Gated Channels

Loading next page...
 
/lp/springer_journal/spontaneous-gating-of-olfactory-cyclic-nucleotide-gated-channels-v0df8JZQu4
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010014
Publisher site
See Article on Publisher Site

Abstract

In vertebrates, cilia on the olfactory receptor neurons have a high density of cyclic-nucleotide-gated (CNG) channels. During transduction of odorous stimuli, cyclic AMP is formed. cAMP gates the CNG channels and this initiates the neuronal depolarization. Here it is shown that the ciliary CNG channels also open spontaneously. In the absence of odorants and second messengers, olfactory cilia have a small basal conductance to cations. Part of this conductance is similar to the cAMP-activated conductance in its sensitivity to channel inhibitors and divalent cations. The basal conductance may help to stabilize the neuronal membrane potential while limiting the sensitivity of odorant detection.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 18, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off