SpMV and BiCG-Stab optimization for a class of hepta-diagonal-sparse matrices on GPU

SpMV and BiCG-Stab optimization for a class of hepta-diagonal-sparse matrices on GPU The abundant data parallelism available in many-core GPUs has been a key interest to improve accuracy in scientific and engineering simulation. In many cases, most of the simulation time is spent in linear solver involving sparse matrix–vector multiply. In forward petroleum oil and gas reservoir simulation, the application of a stencil relationship to structured grid leads to a family of generalized hepta-diagonal solver matrices with some regularity and structural uniqueness. We present a customized storage scheme that takes advantage of generalized hepta-diagonal sparsity pattern and stencil regularity by optimizing both storage and matrix–vector computation. We also present an in-kernel optimization for implementing sparse matrix–vector multiply (SpMV) and biconjugate gradient stabilized (BiCG-Stab) solver. In-kernel is intended to avoid the multiple kernels invocation associated with the use of the numerical library operators. To keep in-kernel, a lock-free inter-block synchronization is used in which completing thread blocks are assigned some independent computations to avoid repeatedly polling the global memory. Other optimizations enable combining reductions and collective write operations to memory. The in-kernel optimization is particularly useful for the iterative structure of BiCG-Stab for preserving vector data locality and to avoid saving vector data back to memory and reloading on each kernel exit and re-entry. Evaluation uses generalized hepta-diagonal matrices that derives from a range of forward reservoir simulation’s structured grids. Results show the profitability of proposed generalized hepta-diagonal custom storage scheme over standard library storage like compressed sparse row, hybrid sparse, and diagonal formats. Using proposed optimizations, SpMV and BiCG-Stab have been noticeably accelerated compared to other implementations using multiple kernel exit–re-entry when the solver is implemented by invoking numerical library operators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Supercomputing Springer Journals

SpMV and BiCG-Stab optimization for a class of hepta-diagonal-sparse matrices on GPU

Loading next page...
 
/lp/springer_journal/spmv-and-bicg-stab-optimization-for-a-class-of-hepta-diagonal-sparse-4hwf7lM9Zj
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Programming Languages, Compilers, Interpreters; Processor Architectures; Computer Science, general
ISSN
0920-8542
eISSN
1573-0484
D.O.I.
10.1007/s11227-017-1972-3
Publisher site
See Article on Publisher Site

Abstract

The abundant data parallelism available in many-core GPUs has been a key interest to improve accuracy in scientific and engineering simulation. In many cases, most of the simulation time is spent in linear solver involving sparse matrix–vector multiply. In forward petroleum oil and gas reservoir simulation, the application of a stencil relationship to structured grid leads to a family of generalized hepta-diagonal solver matrices with some regularity and structural uniqueness. We present a customized storage scheme that takes advantage of generalized hepta-diagonal sparsity pattern and stencil regularity by optimizing both storage and matrix–vector computation. We also present an in-kernel optimization for implementing sparse matrix–vector multiply (SpMV) and biconjugate gradient stabilized (BiCG-Stab) solver. In-kernel is intended to avoid the multiple kernels invocation associated with the use of the numerical library operators. To keep in-kernel, a lock-free inter-block synchronization is used in which completing thread blocks are assigned some independent computations to avoid repeatedly polling the global memory. Other optimizations enable combining reductions and collective write operations to memory. The in-kernel optimization is particularly useful for the iterative structure of BiCG-Stab for preserving vector data locality and to avoid saving vector data back to memory and reloading on each kernel exit and re-entry. Evaluation uses generalized hepta-diagonal matrices that derives from a range of forward reservoir simulation’s structured grids. Results show the profitability of proposed generalized hepta-diagonal custom storage scheme over standard library storage like compressed sparse row, hybrid sparse, and diagonal formats. Using proposed optimizations, SpMV and BiCG-Stab have been noticeably accelerated compared to other implementations using multiple kernel exit–re-entry when the solver is implemented by invoking numerical library operators.

Journal

The Journal of SupercomputingSpringer Journals

Published: Mar 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off