Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus

Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus SymRK-interacting protein 1 (SIP1) has previously been shown to interact with the symbiosis receptor kinase, SymRK, in Lotus japonicus. A longer variant of the SIP1 transcript, SIP1L, was isolated and characterized. SIP1L contains an additional 17 amino acids that make its C-terminus a complete heat shock protein 20 (Hsp20)-like domain. In contrast to SIP1S, the longer splicing variant SIP1L could not interact with SymRK. Both SIP1L and SIP1S transcripts could be detected in developing nodules and other plant tissues, although the former was always more abundant than the latter. SIP1L and SIP1S formed heteromeric protein complexes, which were co-localized in the plasma membrane, cytoplasm and nuclei. Expression of SIP1-RNAi in transgenic hairy roots resulted in impairment in the nodule and arbuscular mycorrhizal development, suggesting an important role of SIP1 in the common symbiosis pathway. Overexpression of either SIP1L or SIP1S increased the number of nodules formed on transgenic hairy roots, indicating a positive role of SIP1 in nodulation. The SIP1S-like transcript was not detected in other higher plants tested, and the SIP1L-like proteins of these plants were capable of interacting with the SymRK orthologs. It is proposed that the loss of the ability of SIP1L to interact with SymRK in Lotus is compensated by the expression of a shorter splicing variant, SIP1S, which binds SymRK and may play a role in relaying the symbiosis signals to downstream cellular events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus

Loading next page...
 
/lp/springer_journal/splice-variants-of-the-sip1-transcripts-play-a-role-in-nodule-Qf710EO4Tt
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0042-3
Publisher site
See Article on Publisher Site

Abstract

SymRK-interacting protein 1 (SIP1) has previously been shown to interact with the symbiosis receptor kinase, SymRK, in Lotus japonicus. A longer variant of the SIP1 transcript, SIP1L, was isolated and characterized. SIP1L contains an additional 17 amino acids that make its C-terminus a complete heat shock protein 20 (Hsp20)-like domain. In contrast to SIP1S, the longer splicing variant SIP1L could not interact with SymRK. Both SIP1L and SIP1S transcripts could be detected in developing nodules and other plant tissues, although the former was always more abundant than the latter. SIP1L and SIP1S formed heteromeric protein complexes, which were co-localized in the plasma membrane, cytoplasm and nuclei. Expression of SIP1-RNAi in transgenic hairy roots resulted in impairment in the nodule and arbuscular mycorrhizal development, suggesting an important role of SIP1 in the common symbiosis pathway. Overexpression of either SIP1L or SIP1S increased the number of nodules formed on transgenic hairy roots, indicating a positive role of SIP1 in nodulation. The SIP1S-like transcript was not detected in other higher plants tested, and the SIP1L-like proteins of these plants were capable of interacting with the SymRK orthologs. It is proposed that the loss of the ability of SIP1L to interact with SymRK in Lotus is compensated by the expression of a shorter splicing variant, SIP1S, which binds SymRK and may play a role in relaying the symbiosis signals to downstream cellular events.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 14, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off