Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus

Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus SymRK-interacting protein 1 (SIP1) has previously been shown to interact with the symbiosis receptor kinase, SymRK, in Lotus japonicus. A longer variant of the SIP1 transcript, SIP1L, was isolated and characterized. SIP1L contains an additional 17 amino acids that make its C-terminus a complete heat shock protein 20 (Hsp20)-like domain. In contrast to SIP1S, the longer splicing variant SIP1L could not interact with SymRK. Both SIP1L and SIP1S transcripts could be detected in developing nodules and other plant tissues, although the former was always more abundant than the latter. SIP1L and SIP1S formed heteromeric protein complexes, which were co-localized in the plasma membrane, cytoplasm and nuclei. Expression of SIP1-RNAi in transgenic hairy roots resulted in impairment in the nodule and arbuscular mycorrhizal development, suggesting an important role of SIP1 in the common symbiosis pathway. Overexpression of either SIP1L or SIP1S increased the number of nodules formed on transgenic hairy roots, indicating a positive role of SIP1 in nodulation. The SIP1S-like transcript was not detected in other higher plants tested, and the SIP1L-like proteins of these plants were capable of interacting with the SymRK orthologs. It is proposed that the loss of the ability of SIP1L to interact with SymRK in Lotus is compensated by the expression of a shorter splicing variant, SIP1S, which binds SymRK and may play a role in relaying the symbiosis signals to downstream cellular events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial