Sphingomyelins of Rat Liver: Biliary Enrichment with Molecular Species Containing 16:0 Fatty Acids as Compared to Canalicular-Enriched Plasma Membranes

Sphingomyelins of Rat Liver: Biliary Enrichment with Molecular Species Containing 16:0 Fatty... We harvested canalicular-enriched plasma membranes of hepatocytes and collected fistula bile from male rats and isolated the sphingomyelins. Following sphingomyelinase hydrolysis, we identified the sphingomyelin molecular species on the basis of their benzoylated ceramide derivatives employing high performance liquid chromatography. Sphingomyelin constitutes ≤3% of total biliary phospholipids (which are mostly sn-1 16:0 long-chain phosphatidylcholines) and approximately 30% of canalicular-enriched membranes. In both cases, the principal molecular species were composed of 16:0, 18:0, 20:0, 22:0, 23:0, 24:0, 24:1 and 24:2 fatty acid classes. However, the 16:0 fatty acid species was enriched in biliary sphingomyelin to a significantly greater degree than in sphingomyelins of canalicular-enriched plasma membranes (46% vs. 25% of total). We argue a physical-chemical case for laterally separated domains of very long chain sphingomyelins on the exoplasmic leaflet of the canalicular membrane. We bolster our hypothesis by the likelihood that the least hydrophobic, e.g., 16:0 sphingomyelin molecular species, are miscible with biliary phosphatidylcholines, and are secreted into bile. Laterally separated domains of very long chain sphingomyelins on the exoplasmic leaflet of the canalicular membrane could provide a means of sequestering cholesterol molecules prior to secretion into bile. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Sphingomyelins of Rat Liver: Biliary Enrichment with Molecular Species Containing 16:0 Fatty Acids as Compared to Canalicular-Enriched Plasma Membranes

Loading next page...
 
/lp/springer_journal/sphingomyelins-of-rat-liver-biliary-enrichment-with-molecular-species-M3sKZJ6Mro
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900480
Publisher site
See Article on Publisher Site

Abstract

We harvested canalicular-enriched plasma membranes of hepatocytes and collected fistula bile from male rats and isolated the sphingomyelins. Following sphingomyelinase hydrolysis, we identified the sphingomyelin molecular species on the basis of their benzoylated ceramide derivatives employing high performance liquid chromatography. Sphingomyelin constitutes ≤3% of total biliary phospholipids (which are mostly sn-1 16:0 long-chain phosphatidylcholines) and approximately 30% of canalicular-enriched membranes. In both cases, the principal molecular species were composed of 16:0, 18:0, 20:0, 22:0, 23:0, 24:0, 24:1 and 24:2 fatty acid classes. However, the 16:0 fatty acid species was enriched in biliary sphingomyelin to a significantly greater degree than in sphingomyelins of canalicular-enriched plasma membranes (46% vs. 25% of total). We argue a physical-chemical case for laterally separated domains of very long chain sphingomyelins on the exoplasmic leaflet of the canalicular membrane. We bolster our hypothesis by the likelihood that the least hydrophobic, e.g., 16:0 sphingomyelin molecular species, are miscible with biliary phosphatidylcholines, and are secreted into bile. Laterally separated domains of very long chain sphingomyelins on the exoplasmic leaflet of the canalicular membrane could provide a means of sequestering cholesterol molecules prior to secretion into bile.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 15, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off