Spermidine application enhances tomato seedling tolerance to salinity-alkalinity stress by modifying chloroplast antioxidant systems

Spermidine application enhances tomato seedling tolerance to salinity-alkalinity stress by... The purpose of this study was to elucidate whether exogenous spermidine (Spd) protection of tomato (Solanum lycopersicum L.) seedlings under salinity-alkalinity stress is associated with antioxidant enzymes in the chloroplast. The effects of exogenous Spd on antioxidant enzyme activity and antioxidant content in the chloroplast were evaluated in seedlings of salt-sensitive ecotype (Zhongza 9) grown in a 75 mM salinity-alkalinity solution, with or without 0.25 mM Spd foliar spraying. Results showed that salinity-alkalinity stress increased MDA content, superoxide anion O 2 •- generation rate, superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) activities and ratio of AsA/DHA and reduced contents of ascorbate (AsA), dehydroascorbate (DHA), AsA+DHA, glutathione (GSH), oxidized glutathione (GSSG), GSH+GSSG, dehydroascorbate reductase (DHAR) activity and ratio of GSH/GSSG in chloroplasts. The exogenous Spd application combined with salinity-alkalinity stress decreased the O 2 •- generation rate and MDA content compared to salinity-alkalinity stress alone. The exogenous Spd also increased AsA-GSH cycle components and increased all antioxidant enzyme activities in most cases. Therefore, exogenous Spd alleviates salinity-alkalinity stress damage using antioxidant enzymes and non-enzymatic systems in chloroplasts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Spermidine application enhances tomato seedling tolerance to salinity-alkalinity stress by modifying chloroplast antioxidant systems

Loading next page...
 
/lp/springer_journal/spermidine-application-enhances-tomato-seedling-tolerance-to-salinity-0enHDmCtiZ
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371604018X
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial