Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater

Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a... Spent magnesia (MgO)-carbon refractory bricks were repurposed as a permeable reactive barrier reactive media to treat a nickel (5 mg l−1)- and cobalt (0.3 mg l−1)-contaminated groundwater. MgO has been used for decades as a heavy metal precipitating agent as it hydrates and buffers the pH in a range of 8.5–10 associated with the minimum solubility of various divalent metals. The contaminated groundwater site’s conditions are typical of contaminated neutral drainage with a pH of 6 as well as high concentrations of iron (220 mg l−1) and sulphates (2500 mg l−1). Using synthetic contaminated water, batch and small-scale column tests were performed to determine the treatment efficiency and longevity. The increase and stabilization of the pH at 10 observed during the tests are associated with the hydration and dissolution of the MgO and promoted the removal not only of a significant proportion of the contaminants but also of iron. During the column test, this accumulation of precipitates over time clogged and passivated the MgO resulting in a loss of chemical performance (pH lowering, metal breakthrough) after 210 pore volumes of filtration. Precipitation also affected the hydraulic conductivity values which dropped from 2.3·10−3 to 4.2·10−4 m s−1 at the end of test. Saturation indices and XRD analyses suggest the precipitates formed are likely composed of goethite as well as iron, cobalt and nickel hydroxides. Recycled MgO-C refractory bricks were demonstrated to be an efficient reactive material for the removal of Co and Ni, but careful considerations should be taken of the potential clogging and passivation phenomena given particular physicochemical conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater

Loading next page...
 
/lp/springer_journal/spent-mgo-carbon-refractory-bricks-as-a-material-for-permeable-lWSNDBN1O8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2414-3
Publisher site
See Article on Publisher Site

Abstract

Spent magnesia (MgO)-carbon refractory bricks were repurposed as a permeable reactive barrier reactive media to treat a nickel (5 mg l−1)- and cobalt (0.3 mg l−1)-contaminated groundwater. MgO has been used for decades as a heavy metal precipitating agent as it hydrates and buffers the pH in a range of 8.5–10 associated with the minimum solubility of various divalent metals. The contaminated groundwater site’s conditions are typical of contaminated neutral drainage with a pH of 6 as well as high concentrations of iron (220 mg l−1) and sulphates (2500 mg l−1). Using synthetic contaminated water, batch and small-scale column tests were performed to determine the treatment efficiency and longevity. The increase and stabilization of the pH at 10 observed during the tests are associated with the hydration and dissolution of the MgO and promoted the removal not only of a significant proportion of the contaminants but also of iron. During the column test, this accumulation of precipitates over time clogged and passivated the MgO resulting in a loss of chemical performance (pH lowering, metal breakthrough) after 210 pore volumes of filtration. Precipitation also affected the hydraulic conductivity values which dropped from 2.3·10−3 to 4.2·10−4 m s−1 at the end of test. Saturation indices and XRD analyses suggest the precipitates formed are likely composed of goethite as well as iron, cobalt and nickel hydroxides. Recycled MgO-C refractory bricks were demonstrated to be an efficient reactive material for the removal of Co and Ni, but careful considerations should be taken of the potential clogging and passivation phenomena given particular physicochemical conditions.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off