Speed up kernel discriminant analysis

Speed up kernel discriminant analysis Linear discriminant analysis (LDA) has been a popular method for dimensionality reduction, which preserves class separability. The projection vectors are commonly obtained by maximizing the between-class covariance and simultaneously minimizing the within-class covariance. LDA can be performed either in the original input space or in the reproducing kernel Hilbert space (RKHS) into which data points are mapped, which leads to kernel discriminant analysis (KDA). When the data are highly nonlinear distributed, KDA can achieve better performance than LDA. However, computing the projective functions in KDA involves eigen-decomposition of kernel matrix, which is very expensive when a large number of training samples exist. In this paper, we present a new algorithm for kernel discriminant analysis, called Spectral Regression Kernel Discriminant Analysis (SRKDA). By using spectral graph analysis, SRKDA casts discriminant analysis into a regression framework, which facilitates both efficient computation and the use of regularization techniques. Specifically, SRKDA only needs to solve a set of regularized regression problems, and there is no eigenvector computation involved, which is a huge save of computational cost. The new formulation makes it very easy to develop incremental version of the algorithm, which can fully utilize the computational results of the existing training samples. Moreover, it is easy to produce sparse projections (Sparse KDA) with a L 1 -norm regularizer. Extensive experiments on spoken letter, handwritten digit image and face image data demonstrate the effectiveness and efficiency of the proposed algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Speed up kernel discriminant analysis

Loading next page...
 
/lp/springer_journal/speed-up-kernel-discriminant-analysis-FUoRf7wrR0
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0189-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial