Speed up interactive image retrieval

Speed up interactive image retrieval In multimedia retrieval, a query is typically interactively refined towards the “optimal” answers by exploiting user feedback. However, in existing work, in each iteration, the refined query is re-evaluated. This is not only inefficient but fails to exploit the answers that may be common between iterations. Furthermore, it may also take too many iterations to get the “optimal” answers. In this paper, we introduce a new approach called OptRFS (optimizing relevance feedback search by query prediction) for iterative relevance feedback search. OptRFS aims to take users to view the “optimal” results as fast as possible. It optimizes relevance feedback search by both shortening the searching time during each iteration and reducing the number of iterations. OptRFS predicts the potential candidates for the next iteration and maintains this small set for efficient sequential scan. By doing so, repeated candidate accesses (i.e., random accesses) can be saved, hence reducing the searching time for the next iteration. In addition, efficient scan on the overlap before the next search starts also tightens the search space with smaller pruning radius. As a step forward, OptRFS also predicts the “optimal” query, which corresponds to “optimal” answers, based on the early executed iterations’ queries. By doing so, some intermediate iterations can be saved, hence reducing the total number of iterations. By taking the correlations among the early executed iterations into consideration, OptRFS investigates linear regression , exponential smoothing and linear exponential smoothing to predict the next refined query so as to decide the overlap of candidates between two consecutive iterations. Considering the special features of relevance feedback, OptRFS further introduces adaptive linear exponential smoothing to self-adjust the parameters for more accurate prediction. We implemented OptRFS and our experimental study on real life data sets show that it can reduce the total cost of relevance feedback search significantly. Some interesting features of relevance feedback search are also discovered and discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Speed up interactive image retrieval

Loading next page...
 
/lp/springer_journal/speed-up-interactive-image-retrieval-7BDKyGClex
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0101-6
Publisher site
See Article on Publisher Site

Abstract

In multimedia retrieval, a query is typically interactively refined towards the “optimal” answers by exploiting user feedback. However, in existing work, in each iteration, the refined query is re-evaluated. This is not only inefficient but fails to exploit the answers that may be common between iterations. Furthermore, it may also take too many iterations to get the “optimal” answers. In this paper, we introduce a new approach called OptRFS (optimizing relevance feedback search by query prediction) for iterative relevance feedback search. OptRFS aims to take users to view the “optimal” results as fast as possible. It optimizes relevance feedback search by both shortening the searching time during each iteration and reducing the number of iterations. OptRFS predicts the potential candidates for the next iteration and maintains this small set for efficient sequential scan. By doing so, repeated candidate accesses (i.e., random accesses) can be saved, hence reducing the searching time for the next iteration. In addition, efficient scan on the overlap before the next search starts also tightens the search space with smaller pruning radius. As a step forward, OptRFS also predicts the “optimal” query, which corresponds to “optimal” answers, based on the early executed iterations’ queries. By doing so, some intermediate iterations can be saved, hence reducing the total number of iterations. By taking the correlations among the early executed iterations into consideration, OptRFS investigates linear regression , exponential smoothing and linear exponential smoothing to predict the next refined query so as to decide the overlap of candidates between two consecutive iterations. Considering the special features of relevance feedback, OptRFS further introduces adaptive linear exponential smoothing to self-adjust the parameters for more accurate prediction. We implemented OptRFS and our experimental study on real life data sets show that it can reduce the total cost of relevance feedback search significantly. Some interesting features of relevance feedback search are also discovered and discussed.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off