Speed up interactive image retrieval

Speed up interactive image retrieval In multimedia retrieval, a query is typically interactively refined towards the “optimal” answers by exploiting user feedback. However, in existing work, in each iteration, the refined query is re-evaluated. This is not only inefficient but fails to exploit the answers that may be common between iterations. Furthermore, it may also take too many iterations to get the “optimal” answers. In this paper, we introduce a new approach called OptRFS (optimizing relevance feedback search by query prediction) for iterative relevance feedback search. OptRFS aims to take users to view the “optimal” results as fast as possible. It optimizes relevance feedback search by both shortening the searching time during each iteration and reducing the number of iterations. OptRFS predicts the potential candidates for the next iteration and maintains this small set for efficient sequential scan. By doing so, repeated candidate accesses (i.e., random accesses) can be saved, hence reducing the searching time for the next iteration. In addition, efficient scan on the overlap before the next search starts also tightens the search space with smaller pruning radius. As a step forward, OptRFS also predicts the “optimal” query, which corresponds to “optimal” answers, based on the early executed iterations’ queries. By doing so, some intermediate iterations can be saved, hence reducing the total number of iterations. By taking the correlations among the early executed iterations into consideration, OptRFS investigates linear regression , exponential smoothing and linear exponential smoothing to predict the next refined query so as to decide the overlap of candidates between two consecutive iterations. Considering the special features of relevance feedback, OptRFS further introduces adaptive linear exponential smoothing to self-adjust the parameters for more accurate prediction. We implemented OptRFS and our experimental study on real life data sets show that it can reduce the total cost of relevance feedback search significantly. Some interesting features of relevance feedback search are also discovered and discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Speed up interactive image retrieval

Loading next page...
Copyright © 2009 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial