Spectrum and Energy Efficient OFDM Multicarrier Modulation for an Underwater Acoustic Channel

Spectrum and Energy Efficient OFDM Multicarrier Modulation for an Underwater Acoustic Channel Time domain synchronization orthogonal frequency division multiplexing technique (TDS-OFDM) can offer better efficiency in spectrum and energy use than standard cyclic prefix and zero padding schemes by replacing the guard interval with a pseudorandom noise sequence. In this paper, a type of frequency domain pseudorandom noise training sequence is proposed for underwater acoustic channel as a TDS-OFDM training sequence and used to update the Doppler scaling factor estimation obtained by using a preamble signal after the initial system is synchronized. A significant improvement can also be achieved in bit error rate performance by the use of the compressed sensing theory to estimate underwater acoustic channel impulse response based on the proposed TDS-OFDM training sequence. Furthermore, the guard interval amplitude in TDS-OFDM can be reduced to improve the resultant energy efficiency and signal-to-interfered-signal ratio. The proposed techniques are carefully developed based on intuitive analysis and combined in a receiver design. Such receiver is evaluated in a measured underwater acoustic channel and a simulated channel. Both technical analysis and experiment results show significant and consistent performance improvements in spectral and energy use. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Spectrum and Energy Efficient OFDM Multicarrier Modulation for an Underwater Acoustic Channel

Loading next page...
 
/lp/springer_journal/spectrum-and-energy-efficient-ofdm-multicarrier-modulation-for-an-XgPUyNDj3R
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4257-5
Publisher site
See Article on Publisher Site

Abstract

Time domain synchronization orthogonal frequency division multiplexing technique (TDS-OFDM) can offer better efficiency in spectrum and energy use than standard cyclic prefix and zero padding schemes by replacing the guard interval with a pseudorandom noise sequence. In this paper, a type of frequency domain pseudorandom noise training sequence is proposed for underwater acoustic channel as a TDS-OFDM training sequence and used to update the Doppler scaling factor estimation obtained by using a preamble signal after the initial system is synchronized. A significant improvement can also be achieved in bit error rate performance by the use of the compressed sensing theory to estimate underwater acoustic channel impulse response based on the proposed TDS-OFDM training sequence. Furthermore, the guard interval amplitude in TDS-OFDM can be reduced to improve the resultant energy efficiency and signal-to-interfered-signal ratio. The proposed techniques are carefully developed based on intuitive analysis and combined in a receiver design. Such receiver is evaluated in a measured underwater acoustic channel and a simulated channel. Both technical analysis and experiment results show significant and consistent performance improvements in spectral and energy use.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Jul 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off