Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands

Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe... Quantum dots (QDs) are increasingly applied in sensing, drug delivery, biomedical imaging, electronics industries, etc. Consequently, it is urgently required to examine their potential threat to humans and the environment. In the present work, the toxicity of CdTe QDs with nearly identical maximum emission wavelength but modified with two different ligands (MPA and BSA) to mitochondria was investigated using flow cytometry, spectroscopic, and microscopic methods. The results showed that QDs induced mitochondrial permeability transition (MPT), which resulted in mitochondrial swelling, collapse of the membrane potential, inner membrane permeability to H+ and K+, the increase of membrane fluidity, depression of respiration, alterations of ultrastructure, and the release of cytochrome c. Furthermore, the protective effects of CsA and EDTA confirmed QDs might be able to induce MPT via a Ca2+-dependent domain. However, the difference between the influence of CdTe QDs and that of Cd2+ on mitochondrial membrane fluidity indicated the release of Cd2+ was not the sole reason that QDs induced mitochondrial dysfunction, which might be related to the nanoscale effect of QDs. Compared with MPA-CdTe QDs, BSA-CdTe QDs had a greater effect on the mitochondrial swelling, membrane fluidity, and permeabilization to H+ and K+ by mitochondrial inner membrane, which was caused the fact that BSA was more lipophilic than MPA. This study provides an important basis for understanding the mechanism of the toxicity of CdTe QDs to mitochondria, and valuable information for safe use of QDs in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands

Loading next page...
 
/lp/springer_journal/spectroscopic-and-microscopic-studies-on-the-mechanism-of-Qaj5mP5asF
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9785-x
Publisher site
See Article on Publisher Site

Abstract

Quantum dots (QDs) are increasingly applied in sensing, drug delivery, biomedical imaging, electronics industries, etc. Consequently, it is urgently required to examine their potential threat to humans and the environment. In the present work, the toxicity of CdTe QDs with nearly identical maximum emission wavelength but modified with two different ligands (MPA and BSA) to mitochondria was investigated using flow cytometry, spectroscopic, and microscopic methods. The results showed that QDs induced mitochondrial permeability transition (MPT), which resulted in mitochondrial swelling, collapse of the membrane potential, inner membrane permeability to H+ and K+, the increase of membrane fluidity, depression of respiration, alterations of ultrastructure, and the release of cytochrome c. Furthermore, the protective effects of CsA and EDTA confirmed QDs might be able to induce MPT via a Ca2+-dependent domain. However, the difference between the influence of CdTe QDs and that of Cd2+ on mitochondrial membrane fluidity indicated the release of Cd2+ was not the sole reason that QDs induced mitochondrial dysfunction, which might be related to the nanoscale effect of QDs. Compared with MPA-CdTe QDs, BSA-CdTe QDs had a greater effect on the mitochondrial swelling, membrane fluidity, and permeabilization to H+ and K+ by mitochondrial inner membrane, which was caused the fact that BSA was more lipophilic than MPA. This study provides an important basis for understanding the mechanism of the toxicity of CdTe QDs to mitochondria, and valuable information for safe use of QDs in the future.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 11, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off