Access the full text.
Sign up today, get DeepDyve free for 14 days.
The charge transfer complex of benzhydryl piperazine as donor with the π-acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinone has been studied spectrophotometrically in acetonitrile medium at different temperatures. On mixing the donor with acceptor, a reddish brown colored charge transfer complex is formed. Electronic absorption spectra of the complex show charge transfer bands at 587, 546 and 457 nm. The molecular composition of the complex was studied by applying Job’s continuous variation and spectrophotometric titration methods. These results support the formation of the complex in a 1:2 ratio. The Benesi–Hildebrand equation has been applied to compute the formation constant and molecular extinction coefficient. Thermodynamic parameters of the charge transfer complexation reaction (standard entropy, standard enthalpy and standard Gibbs free energy) have been calculated. The results of the spectrophotometric study demonstrated that the charge transfer complex formation is endothermic. The computational studies of the charge transfer complex were performed by using the Gaussian 09 W package of programs. The bond lengths, bond angles, dihedral angles, Mulliken atomic charges, molecular electrostatic potential maps and characterization of the highest occupied molecular orbital and lowest unoccupied molecular orbital surfaces of charge transfer complex were computed.
Journal of Solution Chemistry – Springer Journals
Published: May 30, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.