Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.)

Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia)... The effects of insect infestation in agricultural crops are of major economic interest because of increased cost of pest control and reduced final yield. The Russian wheat aphid (RWA: Diuraphis noxia) feeding damage (RWAFD), referred to as “hot spots”, can be traced, indentified, and isolated from uninfested areas for site specific RWA control using remote sensing techniques. Our objectives were to (1) examine the use of spectral reflectance characteristics and changes in selected spectral vegetation indices to discern infested and uninfested wheat (Triticum aestivum L.) by RWA and (2) quantify the relationship between spectral vegetation indices and RWAFD. The RWA infestations were investigated in irrigated, dryland, and greenhouse growing wheat and spectral reflectance was measured using a field radiometer with nine discrete spectral channels. Paired t test comparisons of percent reflectance made for RWA-infested and uninfested wheat yielded significant differences in the visible and near infrared parts of the spectrum. Values of selected indices were significantly reduced due to RWAFD compared to uninfested wheat. Simple linear regression analyses showed that there were robust relationships between RWAFD and spectral vegetation indices with coefficients of determination (r 2) ranging from 0.62 to 0.90 for irrigated wheat, from 0.50 to 0.87 for dryland wheat, and from 0.84 to 0.87 for the greenhouse experiment. These results indicate that remotely sensed data have high potential to identify and separate “hot spots” from uninfested areas for site specific RWA control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.)

Loading next page...
Springer US
Copyright © 2012 by Springer Science+Business Media, LLC
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial