Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection

Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection Remote sensing approaches are of increasing importance for agricultural applications, particularly for the support of selective agricultural measures that increase the productivity of crop stands. In contrast to multi-spectral image data, hyperspectral data has been shown to be highly suitable for the detection of crop growth anomalies, since they allow a detailed examination of stress-dependent changes in certain spectral ranges. However, the entire spectrum covered by hyperspectral data is probably not needed for discrimination between healthy and stressed plants. To define an optimal sensor-based system or a data product designed for crop stress detection, it is necessary to know which spectral wavelengths are significantly affected by stress factors and which spectral resolution is needed. In this study, a single airborne hyperspectral HyMap dataset was analyzed for its potential to detect plant stress symptoms in wheat stands induced by a pathogen infection. The Bhattacharyya distance (BD) with a forward feature search strategy was used to select relevant bands for the differentiation between healthy and fungal infected stands. Two classification algorithms, i.e. spectral angle mapper (SAM) and support vector machines (SVM) were used to classify the data covering an experimental field. Thus, the original dataset as well as datasets reduced to several band combinations as selected by the feature selection approach were classified. To analyze the influence of the spectral resolution on the detection accuracy, the original dataset was additionally stepwise spectrally resampled and a feature selection was carried out on each step. It is demonstrated that just a few phenomenon-specific spectral features are sufficient to detect wheat stands infected with powdery mildew. With original spectral resolution of HyMap, the highest classification accuracy could be obtained by using only 13 spectral bands with a Kappa coefficient of 0.59 in comparison to Kappa 0.57 using all spectral bands of the HyMap sensor. The results demonstrate that even a few hyperspectral bands as well as bands with lower spectral resolution still allow an adequate detection of fungal infections in wheat. By focusing on a few relevant bands, the detection accuracy could be enhanced and thus more reliable information could be extracted which may be helpful in agricultural practice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection

Loading next page...
 
/lp/springer_journal/spectral-requirements-on-airborne-hyperspectral-remote-sensing-data-IFovp1K3Lh
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-011-9222-9
Publisher site
See Article on Publisher Site

Abstract

Remote sensing approaches are of increasing importance for agricultural applications, particularly for the support of selective agricultural measures that increase the productivity of crop stands. In contrast to multi-spectral image data, hyperspectral data has been shown to be highly suitable for the detection of crop growth anomalies, since they allow a detailed examination of stress-dependent changes in certain spectral ranges. However, the entire spectrum covered by hyperspectral data is probably not needed for discrimination between healthy and stressed plants. To define an optimal sensor-based system or a data product designed for crop stress detection, it is necessary to know which spectral wavelengths are significantly affected by stress factors and which spectral resolution is needed. In this study, a single airborne hyperspectral HyMap dataset was analyzed for its potential to detect plant stress symptoms in wheat stands induced by a pathogen infection. The Bhattacharyya distance (BD) with a forward feature search strategy was used to select relevant bands for the differentiation between healthy and fungal infected stands. Two classification algorithms, i.e. spectral angle mapper (SAM) and support vector machines (SVM) were used to classify the data covering an experimental field. Thus, the original dataset as well as datasets reduced to several band combinations as selected by the feature selection approach were classified. To analyze the influence of the spectral resolution on the detection accuracy, the original dataset was additionally stepwise spectrally resampled and a feature selection was carried out on each step. It is demonstrated that just a few phenomenon-specific spectral features are sufficient to detect wheat stands infected with powdery mildew. With original spectral resolution of HyMap, the highest classification accuracy could be obtained by using only 13 spectral bands with a Kappa coefficient of 0.59 in comparison to Kappa 0.57 using all spectral bands of the HyMap sensor. The results demonstrate that even a few hyperspectral bands as well as bands with lower spectral resolution still allow an adequate detection of fungal infections in wheat. By focusing on a few relevant bands, the detection accuracy could be enhanced and thus more reliable information could be extracted which may be helpful in agricultural practice.

Journal

Precision AgricultureSpringer Journals

Published: Mar 16, 2011

References

  • Precision agriculture and sustainability
    Bongiovanni, R; Lowenberg-Deboer, J

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off