Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper we obtain lower estimates for the first non-trivial eigenvalue of the p-Laplace Neumann operator in bounded simply connected planar domains $$\varOmega \subset {\mathbb {R}}^2$$ Ω ⊂ R 2 . This study is based on a quasiconformal version of the universal two-weight Poincaré–Sobolev inequalities obtained in our previous papers for conformal weights and its non weighted version for so-called K-quasiconformal $$\alpha $$ α -regular domains. The main technical tool is the geometric theory of composition operators in relation with the Brennan’s conjecture for (quasi)conformal mappings.
Bollettino dell'Unione Matematica Italiana – Springer Journals
Published: May 17, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.