Spectral difference for statistical model-based speech enhancement in speech recognition

Spectral difference for statistical model-based speech enhancement in speech recognition In this paper, we propose a statistical model-based speech enhancement technique using the spectral difference scheme for the speech recognition in virtual reality. In the analyzing step, two principal parameters, the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter in noise estimation, are uniquely determined as optimal operating points according to the spectral difference under various noise conditions. These optimal operating points, which are specific according to different spectral differences, are estimated based on the composite measure, which is a relevant criterion in terms of speech quality. An efficient mapping function is also presented to provide an index of the metric table associated with the spectral difference so that operating points can be determined according to various noise conditions for an on-line step. In the on-line speech enhancement step, different parameters are chosen on a frame-by-frame basis under the metric table of the spectral difference. The performance of the proposed method is evaluated using objective and subjective speech quality measures in various noise environments. Our experimental results show that the proposed algorithm yields better performances than conventional algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Spectral difference for statistical model-based speech enhancement in speech recognition

Loading next page...
 
/lp/springer_journal/spectral-difference-for-statistical-model-based-speech-enhancement-in-LyR0fYE0iC
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4122-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a statistical model-based speech enhancement technique using the spectral difference scheme for the speech recognition in virtual reality. In the analyzing step, two principal parameters, the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter in noise estimation, are uniquely determined as optimal operating points according to the spectral difference under various noise conditions. These optimal operating points, which are specific according to different spectral differences, are estimated based on the composite measure, which is a relevant criterion in terms of speech quality. An efficient mapping function is also presented to provide an index of the metric table associated with the spectral difference so that operating points can be determined according to various noise conditions for an on-line step. In the on-line speech enhancement step, different parameters are chosen on a frame-by-frame basis under the metric table of the spectral difference. The performance of the proposed method is evaluated using objective and subjective speech quality measures in various noise environments. Our experimental results show that the proposed algorithm yields better performances than conventional algorithms.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Nov 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off