Spectral contributions of the components of seawater to the beam attenuation coefficient in surface waters of the Mediterranean Sea

Spectral contributions of the components of seawater to the beam attenuation coefficient in... We compute model spectra of the beam attenuation coefficient in surface waters of the Mediterranean Sea. These spectra are used to determine the contribution of the components of seawater (suspended matter, yellow substance, pigments of phytoplankton, and pure water) to the beam attenuation coefficient in different types of seawater. For the surface waters, we establish the relationship between the light scattering coefficient and the attenuation coefficient at a wavelength of 547 nm and determine the background (limiting minimum) value of the coefficient of absorption by the yellow substance in waters of the Mediterranean Sea. It is compared with the values of the same parameter for some other basins (Black Sea, Lake Baikal, Baltic Sea, and oceanic waters). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Spectral contributions of the components of seawater to the beam attenuation coefficient in surface waters of the Mediterranean Sea

Loading next page...
 
/lp/springer_journal/spectral-contributions-of-the-components-of-seawater-to-the-beam-Br7tXyIxjq
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-012-9124-z
Publisher site
See Article on Publisher Site

Abstract

We compute model spectra of the beam attenuation coefficient in surface waters of the Mediterranean Sea. These spectra are used to determine the contribution of the components of seawater (suspended matter, yellow substance, pigments of phytoplankton, and pure water) to the beam attenuation coefficient in different types of seawater. For the surface waters, we establish the relationship between the light scattering coefficient and the attenuation coefficient at a wavelength of 547 nm and determine the background (limiting minimum) value of the coefficient of absorption by the yellow substance in waters of the Mediterranean Sea. It is compared with the values of the same parameter for some other basins (Black Sea, Lake Baikal, Baltic Sea, and oceanic waters).

Journal

Physical OceanographySpringer Journals

Published: Apr 3, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off