Spectral and power efficiency investigation in single- and multi-line-rate optical wavelength division multiplexed (WDM) networks

Spectral and power efficiency investigation in single- and multi-line-rate optical wavelength... In order to tackle the increasing heterogeneous global Internet traffic, mixed-line-rate (MLR) optical wavelength division multiplexed (WDM) networks have emerged as the cost- and power-efficient solution. In MLR WDM networks, channels are structured as sub-bands, each of which consists of wavelengths operating at a similar data rate. By reducing the (1) spacing within a sub-band, or (2) spacing between sub-bands operating at different data rates, spectral efficiency can be improved. However, owing to high physical layer impairment levels, decrease in sub-band spacing adversely affects transmission reach of the channels, which results in higher power consumption due to requirement of increased signal regeneration. In this work, we compare power efficiency of various MLR and single-line-rate (SLR) solutions, and also investigate the trade-off that exists between spectral and power efficiency in a WDM network. Simulation results indicate that (1) for high transmission capacities, a combination of 100 Gbps transponders and 40 Gbps regenerators will obtain the highest power efficiency; (2) for long connection distances, a point of merging occurs for various SLR and MLR designs, where power consumption is independent of the frequency band distribution; and (3) for MLR systems, both spectral and power efficiency can be improved by using either shorter links with higher bandwidth assignment to 100 Gbps wavelengths, or longer links with higher bandwidth assignment to 40 Gbps wavelengths. Finally, the results indicate that focusing on spectral efficiency alone results in extra power consumption, since high quality of transmission and spectral efficiency leads to increased regeneration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Spectral and power efficiency investigation in single- and multi-line-rate optical wavelength division multiplexed (WDM) networks

Loading next page...
 
/lp/springer_journal/spectral-and-power-efficiency-investigation-in-single-and-multi-line-dQDVdRtZli
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0618-3
Publisher site
See Article on Publisher Site

Abstract

In order to tackle the increasing heterogeneous global Internet traffic, mixed-line-rate (MLR) optical wavelength division multiplexed (WDM) networks have emerged as the cost- and power-efficient solution. In MLR WDM networks, channels are structured as sub-bands, each of which consists of wavelengths operating at a similar data rate. By reducing the (1) spacing within a sub-band, or (2) spacing between sub-bands operating at different data rates, spectral efficiency can be improved. However, owing to high physical layer impairment levels, decrease in sub-band spacing adversely affects transmission reach of the channels, which results in higher power consumption due to requirement of increased signal regeneration. In this work, we compare power efficiency of various MLR and single-line-rate (SLR) solutions, and also investigate the trade-off that exists between spectral and power efficiency in a WDM network. Simulation results indicate that (1) for high transmission capacities, a combination of 100 Gbps transponders and 40 Gbps regenerators will obtain the highest power efficiency; (2) for long connection distances, a point of merging occurs for various SLR and MLR designs, where power consumption is independent of the frequency band distribution; and (3) for MLR systems, both spectral and power efficiency can be improved by using either shorter links with higher bandwidth assignment to 100 Gbps wavelengths, or longer links with higher bandwidth assignment to 40 Gbps wavelengths. Finally, the results indicate that focusing on spectral efficiency alone results in extra power consumption, since high quality of transmission and spectral efficiency leads to increased regeneration.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off